Choosability of the square of planar subcubic graphs with large girth

被引:19
|
作者
Havet, F. [1 ]
机构
[1] INRIA Sophia Antipolis, UNSA, CNRS, Projet Mascotte, F-06902 Sophia Antipolis, France
关键词
List colouring; Square of a graph; Bounded density; Planar graph;
D O I
10.1016/j.disc.2007.12.100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the choice number of the square of a subcubic graph with maximum average degree less than 18/7 is at most 6. As a corollary, we get that the choice number of the square of a subcubic planar graph with girth at least 9 is at most 6. We then show that the choice number of the square of a subcubic planar graph with girth at least 13 is at most 5. (C) 2008 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:3553 / 3563
页数:11
相关论文
共 50 条
  • [21] 2-DISTANCE 4-COLORABILITY OF PLANAR SUBCUBIC GRAPHS WITH GIRTH AT LEAST 22
    Borodin, Oleg V.
    Ivanova, Anna O.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 141 - 151
  • [22] Neighbor-sum-distinguishing edge choosability of subcubic graphs
    Jingjing Huo
    Yiqiao Wang
    Weifan Wang
    Journal of Combinatorial Optimization, 2017, 34 : 742 - 759
  • [23] Minimum choosability of planar graphs
    Huijuan Wang
    Bin Liu
    Ling Gai
    Hongwei Du
    Jianliang Wu
    Journal of Combinatorial Optimization, 2018, 36 : 13 - 22
  • [24] Path Choosability of Planar Graphs
    Chappell, Glenn G.
    Hartman, Chris
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [25] Minimum choosability of planar graphs
    Wang, Huijuan
    Liu, Bin
    Gai, Ling
    Du, Hongwei
    Wu, Jianliang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) : 13 - 22
  • [26] Neighbor-sum-distinguishing edge choosability of subcubic graphs
    Huo, Jingjing
    Wang, Yiqiao
    Wang, Weifan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) : 742 - 759
  • [27] Independent domination in subcubic graphs of girth at least six
    Abrishami, Gholamreza
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2018, 341 (01) : 155 - 164
  • [28] A note on adaptable choosability and choosability with separation of planar graphs
    Casselgren, Carl Johan
    Granholmt, Jonas B.
    Raspaud, André
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 101 - 109
  • [29] Acyclic edge coloring of planar graphs with large girth
    Yu, Dongxiao
    Hou, Jianfeng
    Liu, Guizhen
    Liu, Bin
    Xu, Lan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) : 5196 - 5200
  • [30] Odd Induced Subgraphs in Planar Graphs with Large Girth
    Rao, Mengjiao
    Hou, Jianfeng
    Zeng, Qinghou
    GRAPHS AND COMBINATORICS, 2022, 38 (04)