SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data

被引:44
|
作者
Cava, Claudia [1 ]
Colaprico, Antonio [2 ,3 ]
Bertoli, Gloria [1 ]
Graudenzi, Alex [1 ]
Silva, Tiago C. [4 ]
Olsen, Catharina [2 ,3 ]
Noushmehr, Houtan [4 ,5 ]
Bontempi, Gianluca [2 ,3 ]
Mauri, Giancarlo [6 ,7 ]
Castiglioni, Isabella [1 ]
机构
[1] Inst Mol Bioimaging & Physiol Natl Res Council IB, I-20090 Segrate, Mi, Italy
[2] Interuniv Inst Bioinformat Brussels IB 2, B-1050 Brussels, Belgium
[3] Univ Libre Bruxelles, Dept Informat, Machine Learning Grp MLG, B-1050 Brussels, Belgium
[4] Univ Sao Paulo, Dept Genet, Ribeirao Preto Med Sch, BR-14049900 Sao Paulo, Brazil
[5] Henry Ford Hosp, Dept Neurosurg, Detroit, MI 48202 USA
[6] Univ Milano Bicocca, Dept Informat Syst & Commun, I-20125 Milan, Italy
[7] SYSBIO Ctr Syst Biol SYSBIO, I-20126 Milan, Italy
基金
巴西圣保罗研究基金会;
关键词
microRNA; network; protein; gene; MICRORNA-TARGET INTERACTIONS; PROSTATE; GENES; EXPRESSION; PREDICTION; CALCIFICATION; BIOMARKERS; PROGNOSIS; DIAGNOSIS; GENOMICS;
D O I
10.3390/ijms18020274
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g., co-expression, physical interaction, co-localization, genetic influence, pathways, and shared protein domains. The important regulatory mechanisms of these networks involve miRNAs. We developed an R/Bioconductor package, namely SpidermiR, which offers an easy access to both GRNs and miRNAs to the end user, and integrates this information with differentially expressed genes obtained from The Cancer Genome Atlas. Specifically, SpidermiR allows the users to: (i) query and download GRNs and miRNAs from validated and predicted repositories; (ii) integrate miRNAs with GRNs in order to obtain miRNA-gene-gene and miRNA-protein-protein interactions, and to analyze miRNA GRNs in order to identify miRNA-gene communities; and (iii) graphically visualize the results of the analyses. These analyses can be performed through a single interface and without the need for any downloads. The full data sets are then rapidly integrated and processed locally.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Assessing the quality of comparative genomics data and results with the cogeqc R/Bioconductor package
    Almeida-Silva, Fabricio
    Van de Peer, Yves
    METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (12): : 2942 - 2952
  • [42] CTCF: an R/bioconductor data package of human and mouse CTCF binding sites
    Dozmorov, Mikhail G.
    Mu, Wancen
    Davis, Eric S.
    Lee, Stuart
    Triche, Timothy J.
    Phanstiel, Douglas H.
    Love, Michael, I
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [43] GeneTonic: an R/Bioconductor package for streamlining the interpretation of RNA-seq data
    Federico Marini
    Annekathrin Ludt
    Jan Linke
    Konstantin Strauch
    BMC Bioinformatics, 22
  • [44] A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package
    Meng, Jia
    Lu, Zhiliang
    Liu, Hui
    Zhang, Lin
    Zhang, Shaowu
    Chen, Yidong
    Rao, Manjeet K.
    Huang, Yufei
    METHODS, 2014, 69 (03) : 274 - 281
  • [45] Pathview: an R/Bioconductor package for pathway-based data integration and visualization
    Luo, Weijun
    Brouwer, Cory
    BIOINFORMATICS, 2013, 29 (14) : 1830 - 1831
  • [46] karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data
    Gel, Bernat
    Serra, Eduard
    BIOINFORMATICS, 2017, 33 (19) : 3088 - 3090
  • [47] spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
    Brenda Pardo
    Abby Spangler
    Lukas M. Weber
    Stephanie C. Page
    Stephanie C. Hicks
    Andrew E. Jaffe
    Keri Martinowich
    Kristen R. Maynard
    Leonardo Collado-Torres
    BMC Genomics, 23
  • [48] spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data
    Pardo, Brenda
    Spangler, Abby
    Weber, Lukas M.
    Page, Stephanie C.
    Hicks, Stephanie C.
    Jaffe, Andrew E.
    Martinowich, Keri
    Maynard, Kristen R.
    Collado-Torres, Leonardo
    BMC GENOMICS, 2022, 23 (01)
  • [49] GeneTonic: an R/Bioconductor package for streamlining the interpretation of RNA-seq data
    Marini, Federico
    Ludt, Annekathrin
    Linke, Jan
    Strauch, Konstantin
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [50] NanoMethViz: An R/Bioconductor package for visualizing long-read methylation data
    Su, Shian
    Gouil, Quentin
    Blewitt, Marnie E.
    Cook, Dianne
    Hickey, Peter F.
    Ritchie, Matthew E.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (10)