GAVis system supporting visualization, analysis and solving combinatorial optimization problems using evolutionary algorithms

被引:0
|
作者
Switalski, Piotr [1 ]
Seredynski, Franciszek [1 ,2 ,3 ]
Hertel, Przemyslaw [4 ]
机构
[1] Univ Podlasie, Dept Comp Sci, Sienkiewicza 51, PL-08110 Siedlce, Poland
[2] Polish Japanese Inst Informat Technol, PL-02008 Warsaw, Poland
[3] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
[4] Warsaw Univ Technol, PL-00665 Warsaw, Poland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper presents the GAVis (Genetic Algorithm Visualization) System designed to support solving combinatorial optimization problems using evolutionary algorithms. One of the main features of the system is tracking complex dependencies between parameters of an implemented algorithm with use of visualization. The role of the system is shown by its application to solve two problems: multiprocessor scheduling problem and Travelling Salesman Problem (TSP).
引用
收藏
页码:75 / +
页数:2
相关论文
共 50 条
  • [31] Evolutionary Many-Objective Algorithms for Combinatorial Optimization Problems: A Comparative Study
    Behmanesh, Reza
    Rahimi, Iman
    Gandomi, Amir H.
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (02) : 673 - 688
  • [32] Multiobjective combinatorial optimization with interactive evolutionary algorithms: The case of facility location problems
    Barbati, Maria
    Corrente, Salvatore
    Greco, Salvatore
    [J]. EURO JOURNAL ON DECISION PROCESSES, 2024, 12
  • [33] On the influence of using initialization functions on genetic algorithms solving combinatorial optimization problems: a first study on the TSP
    Osaba, E.
    Carballedo, R.
    Diaz, F.
    Onieva, E.
    Lopez, P.
    Perallos, A.
    [J]. 2014 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2014,
  • [34] Solving many-objective optimization problems using set-based evolutionary algorithms
    [J]. Gong, D.-W. (dwgong@vip.163.com), 1600, Chinese Institute of Electronics (42):
  • [35] Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems
    Osaba, E.
    Carballedo, R.
    Diaz, F.
    Onieva, E.
    de la Iglesia, I.
    Perallos, A.
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [36] Parallel algorithms for solving combinatorial macromodelling problems
    Stepashko, Volodymyr
    Yefimenko, Serhiy
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2009, 85 (04): : 98 - 99
  • [37] Solving combinatorial optimization problems using the oscillatory neural network
    Watanabe, Y
    Yoshino, K
    Kakeshita, T
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1997, E80D (01) : 72 - 77
  • [38] Analysis and Design of Oscillator Coupling for Solving Combinatorial Optimization Problems
    Graber, Markus
    Hofmann, Klaus
    [J]. 2022 29TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (IEEE ICECS 2022), 2022,
  • [39] Solving bus terminal location problems using evolutionary algorithms
    Ghanbari, Reza
    Mahdavi-Amiri, Nezam
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (01) : 991 - 999
  • [40] AN OPTIMIZATION SPIKING NEURAL P SYSTEM FOR APPROXIMATELY SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS
    Zhang, Gexiang
    Rong, Haina
    Neri, Ferrante
    Perez-Jimenez, Mario J.
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2014, 24 (05)