MRWMDA: A novel framework to infer miRNA-disease associations

被引:5
|
作者
Wang Meixi [1 ]
Zhu Ping [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
miRNA; Disease; Association prediction; Random walk with restart algorithm; HUMAN MICRORNA; FUNCTIONAL SIMILARITY; RANDOM-WALK; DATABASE; CANCER; LNCRNA;
D O I
10.1016/j.biosystems.2020.104292
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs (miRNAs) are widely involved in a series of significant biological processes, which have been revealed and verified by accumulating experimental studies. The computational inference of the correlation between miRNAs and diseases is essential to facilitate the detection of disease biomarkers for disease diagnosis, prevention, treatment and prognosis. In this paper, a model with Multiple use of Random Walk with restart algorithm was introduced for the prediction of the MiRNA-Disease Association (MRWMDA). Based on diverse similarity measures, the model first implemented the random walk with restart (RWR) algorithm on the integrated similarity network to construct the topological similarity of miRNAs and diseases, which took full advantage of the network topology information. Then, the RWR algorithm was applied in the miRNA topological similarity network, and a steady probability of each miRNA-disease pair was obtained to prioritize miRNA candidates. In particular, the initial probability of the RWR algorithm was determined by utilizing the combination of the recommendation algorithm and the maximum similarity method. The proposed model achieved significant improvement in prediction compared with previous models, with an AUC of 0.9353 and an AUPR of 0.4809. In addition, case studies of breast neoplasms and lung neoplasms representing different disease types further demonstrated the excellent ability of MRWMDA in detecting potential disease-associated miRNAs. These performance analyses indicated that MRWMDA could be an effective and powerful biological computational tool in relevant biomedical studies.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network
    Liang, Xujun
    Guo, Ming
    Jiang, Longying
    Fu, Ying
    Zhang, Pengfei
    Chen, Yongheng
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2024, 16 (02) : 289 - 303
  • [32] DPFMDA: Distributed and privatized framework for miRNA-Disease association prediction
    Chen, Lixin
    Liu, Bingtao
    Yan, Chenggang
    PATTERN RECOGNITION LETTERS, 2018, 109 : 4 - 11
  • [33] Prediction of miRNA-disease associations based on strengthened hypergraph convolutional autoencoder
    Xie, Guo-Bo
    Yu, Jun-Rui
    Lin, Zhi-Yi
    Gu, Guo-Sheng
    Chen, Rui-Bin
    Xu, Hao-Jie
    Liu, Zhen-Guo
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 108
  • [34] Predicting miRNA-Disease Associations Based on Heterogeneous Graph Attention Networks
    Ji, Cunmei
    Wang, Yutian
    Ni, Jiancheng
    Zheng, Chunhou
    Su, Yansen
    FRONTIERS IN GENETICS, 2021, 12
  • [35] Matrix reconstruction with reliable neighbors for predicting potential MiRNA-disease associations
    Feng, Hailin
    Jin, Dongdong
    Li, Jian
    Li, Yane
    Zou, Quan
    Liu, Tongcun
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [36] Deep-belief network for predicting potential miRNA-disease associations
    Chen, Xing
    Li, Tian-Hao
    Zhao, Yan
    Wang, Chun-Chun
    Zhu, Chi-Chi
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03)
  • [37] SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder
    Wang, Shudong
    Lin, Boyang
    Zhang, Yuanyuan
    Qiao, Sibo
    Wang, Fuyu
    Wu, Wenhao
    Ren, Chuanru
    CELLS, 2022, 11 (24)
  • [38] Prediction of Potential miRNA-Disease Associations Based on a Masked Graph Autoencoder
    Feng, Hailin
    Ke, Chenchen
    Zou, Quan
    Zhu, Zhechen
    Liu, Tongcun
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (06) : 1874 - 1885
  • [39] SMALF: miRNA-disease associations prediction based on stacked autoencoder and XGBoost
    Dayun Liu
    Yibiao Huang
    Wenjuan Nie
    Jiaxuan Zhang
    Lei Deng
    BMC Bioinformatics, 22
  • [40] EMCMDA: predicting miRNA-disease associations via efficient matrix completion
    Qin, Chao
    Zhang, Jiancheng
    Ma, Lingyu
    SCIENTIFIC REPORTS, 2024, 14 (01):