Dilations and Completions for Gabor Systems

被引:16
|
作者
Han, Deguang [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Frames; Projective unitary representations; Time-frequency lattices; Gabor frames; Dual frame pair dilation; Von Neumann algebras; Affine systems; FRAME REPRESENTATIONS; HEISENBERG;
D O I
10.1007/s00041-008-9028-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Lambda = K x L be a full rank time-frequency lattice in R-d x R-d. In this note we first prove that any dual Gabor frame pair for a Lambda-shift invariant sub-space M can be dilated to a dual Gabor frame pair for the whole space L-2(R-d) when the volume v(Lambda) of the lattice Lambda satisfies the condition v(Lambda) <= 1, and to a dual Gabor Ricsz basis pair for a Lambda-shift invariant subspace containing M when v(Lambda) > 1. This generalizes the dilation result in Gabardo and Han (J. Fourier Anal. Appl. 7: 419-433, 2001) to both higher dimensions and dual subspace Gabor frame pairs. Secondly, for any fixed positive integer N, we investigate the problem whether any Bessel-Gabor family G(g, Lambda) can be completed to a tight Gabor (multi-)frame G(g, Lambda) boolean OR (boolean OR(N)(j=1) G(g(j), Lambda)) for L-2(R-d). We show that this is true whenever v(Lambda) <= N. In particular, when v(Lambda) <= 1, any Bessel-Gabor system is a subset of a tight Gabor frame G(g, Lambda) boolean OR G(h, Lambda) for L-2(R-d). Related results for affine systems are also discussed.
引用
收藏
页码:201 / 217
页数:17
相关论文
共 50 条
  • [41] Frame set for Gabor systems with Haar window
    Dai, Xin-Rong
    Zhu, Meng
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 71
  • [42] Completions
    Clem, Nicholas
    JPT, Journal of Petroleum Technology, 2015, 67 (09):
  • [43] Completions
    Lehr, Doug
    JPT, Journal of Petroleum Technology, 2021, 73 (04):
  • [44] REGULARITY FOR COMPLETE AND MINIMAL GABOR SYSTEMS ON A LATTICE
    Heil, Christopher
    Powell, Alexander M.
    ILLINOIS JOURNAL OF MATHEMATICS, 2009, 53 (04) : 1077 - 1094
  • [45] Representations of product systems over semigroups and dilations of commuting CP maps
    Solel, Baruch
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 235 (02) : 593 - 618
  • [46] On Riesz duals for Gabor systems on LCA groups
    Arati, S.
    Devaraj, P.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (05) : 1801 - 1815
  • [47] Uncertainty principle for Gabor systems and the Zak transform
    Czaja, Wojciech
    Zienkiewicz, Jacek
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (12)
  • [48] The abc-Problem for Gabor Systems Preface
    Dai, Xin-Rong
    Sun, Qiyu
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 244 (1152) : VII - IX
  • [49] THE STATISTICAL RESTRICTED ISOMETRY PROPERTY FOR GABOR SYSTEMS
    Kaplan, Alihan
    Pohl, Volker
    Lee, Dae Gwan
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 45 - 49
  • [50] ON THE FINITE LINEAR INDEPENDENCE OF LATTICE GABOR SYSTEMS
    Demeter, Ciprian
    Gautam, S. Zubin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1735 - 1747