Thermodynamic stability and pressure dependence of FePO4 polymorphs

被引:11
|
作者
Lethole, N. L. [1 ]
Chauke, H. R. [1 ]
Ngoepe, P. E. [1 ]
机构
[1] Univ Limpopo, Mat Modelling Ctr, Private Bag X1106, ZA-0727 Sovenga, South Africa
基金
新加坡国家研究基金会;
关键词
FePO4; polymorphs; Thermodynamic stability; Elastic properties; Band gap; Phonon dispersion curves; Pressure; Transformation; ELASTIC-CONSTANTS; ELECTRONIC-STRUCTURE; LIFEPO4; DIFFRACTION; BATTERIES; BEHAVIOR; METALS; PHASE;
D O I
10.1016/j.comptc.2019.03.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Olivine LiFePO4 is a promising cathode material for lithium ion batteries. Its delithiated form FePO4 has attracted interest as potential cathode for rechargeable lithium ion batteries due to high charge/discharge capacity and low cost. This paper report pressure dependence DFT + U calculations and stability of FePO4 polymorphs. The heats of formation predict that berlinite polymorph is thermodynamically stable up to 4 GPa, while HP phase reaches a transition above 4 GPa at 0 K. The energy band gap is relatively wide, suggesting that FePO4 polymorphs are low in electronic conductivity. However, conductivity is expected to improve at high pressure (4 to 7.5 GPa). All independent elastic constants are positive corresponding to stability of FePO4 polymorphs, except for berlinite. Its phonon dispersion curves display negative vibrations along high symmetry direction (condition of instability) at 0 GPa. However, at pressure above 7 GPa, the berlinite becomes stable due to absence of soft modes.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 50 条
  • [21] Analysis of the FePO4 to LiFePO4 phase transition
    J. L. Allen
    T. R. Jow
    J. Wolfenstine
    Journal of Solid State Electrochemistry, 2008, 12 : 1031 - 1033
  • [22] Electronic Conductivity and Defect Chemistry of Heterosite FePO4
    Zhu, Changbao
    Weichert, Katja
    Maier, Joachim
    ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (10) : 1917 - 1921
  • [23] Synthesis of nanorods FePO4 via a facile route
    Liu, Haowen
    JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (06) : 2003 - 2006
  • [24] Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating
    Qing, Chunbo
    Bai, Ying
    Yang, Jueming
    Zhang, Weifeng
    ELECTROCHIMICA ACTA, 2011, 56 (19) : 6612 - 6618
  • [25] Equilibrium and kinetics studies of arsenate adsorption by FePO4
    Hamayun, M.
    Mahmood, T.
    Naeem, A.
    Muska, M.
    Din, S. U.
    Waseem, M.
    CHEMOSPHERE, 2014, 99 : 207 - 215
  • [26] Non oxidative and oxidative dehydrogenation of n-octane using FePO4: effect of different FePO4 phases on the product selectivity
    Dasireddy, Venkata D. B. C.
    Khan, Faiza B.
    Bharuth-Ram, K.
    Singh, Sooboo
    Friedrich, Holger B.
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (22) : 7591 - 7600
  • [27] Agglomeration of FePO4 Prepared by Continuous Reaction Precipitation
    Xiao, Yang
    Zhang, Zhen
    Pu, Weihua
    MATERIALS RESEARCH AND APPLICATIONS, PTS 1-3, 2014, 875-877 : 95 - 100
  • [28] MAGNETIC-PROPERTIES OF FEPO4 AND RELATED COMPOUNDS
    WILSON, LK
    JACKSON, JM
    SRYGLEY, FD
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (02): : 104 - 104
  • [29] Shock wave induced phase transition in α-FePO4
    Joshi, KD
    Suresh, N
    Jyoti, G
    Kulshreshtha, SK
    Gupta, SC
    Sikka, SK
    SHOCK WAVES, 1998, 8 (03) : 173 - 176
  • [30] Sorption of isosteric heat of metal ions by FePO4
    Naeem, A.
    Mustafa, S.
    Dilara, B.
    Ilyas, M.
    Samad, H. Y.
    Safdar, M.
    JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2007, 29 (01): : 1 - 4