The problem of simultaneous estimation of covariance matrices in balanced hierarchical multivariate variance components models is considered. A new class of estimators is proposed which dominates the usual sensible estimators with respect to total variability (sum of squared error losses). These estimators shrink towards a multiple of an identity matrix, the multiple being the geometric mean of the characteristic roots of the component Wishart matrices. Numerical illustrations are considered to exhibit the improvement in risk under a simple model.
机构:
Natl Univ Singapore, Dept Stat & Data Sci, Block S16,Level 7,6 Sci Dr 2, Singapore 117546, SingaporeNatl Univ Singapore, Dept Stat & Data Sci, Block S16,Level 7,6 Sci Dr 2, Singapore 117546, Singapore
Chaudhuri, Sanjay
Kubokawa, Tatsuya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Fac Econ, Tokyo, JapanNatl Univ Singapore, Dept Stat & Data Sci, Block S16,Level 7,6 Sci Dr 2, Singapore 117546, Singapore
Kubokawa, Tatsuya
Sugasawa, Shonosuke
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, JapanNatl Univ Singapore, Dept Stat & Data Sci, Block S16,Level 7,6 Sci Dr 2, Singapore 117546, Singapore