Generalized symmetric tensors and related topics

被引:2
|
作者
Gong, MP [1 ]
机构
[1] ACAD SINICA,CTR COMP,BEIJING 100080,PEOPLES R CHINA
关键词
D O I
10.1016/0024-3795(94)00136-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T = Sigma(sigma is an element of G) M(sigma) x P(sigma), where M is a unitary matrix representation of the group G as unitary linear operators on a space, U, and P(sigma) the permutation operator on W = x(n) V. A generalized symmetric tensor is a tensor of the form T(u x w), where u is an element of U and w is a decomposable tensor of W. We discuss the properties of generalized symmetric tensors. The conditions when two generalized symmetric tensors are equal are also considered. We present a new characterization of the set of A satisfying M(AX) = M(X) for arbitrary X with M(A)= Sigma(sigma is an element of G) M(sigma) Pi(i = 1)(n) a(i sigma)(i).
引用
收藏
页码:113 / 129
页数:17
相关论文
共 50 条
  • [41] Generalized Polarization Tensors
    Ammari, Habib
    Garnier, Josselin
    Jing, Wenjia
    Wang, Han
    Kang, Hyeonbae
    Lim, Mikyoung
    Knut, Solna
    MATHEMATICAL AND STATISTICAL METHODS FOR MULTISTATIC IMAGING, 2013, 2098 : 115 - 131
  • [42] Generalized Vandermonde tensors
    Xu, Changqing
    Wang, Mingyue
    Li, Xian
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 593 - 603
  • [43] Generalized Killing Tensors
    C. D. Collinson
    L. Howarth
    General Relativity and Gravitation, 2000, 32 : 1767 - 1776
  • [44] Generalized Kac-Moody algebras and some related topics
    Ray, U
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 38 (01) : 1 - 42
  • [45] Identifiability for a Class of Symmetric Tensors
    Angelini, Elena
    Chiantini, Luca
    Mazzon, Andrea
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (04)
  • [46] Block tensors and symmetric embeddings
    Ragnarsson, Stefan
    Van Loan, Charles F.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) : 853 - 874
  • [47] EXPLOITING SYMMETRY IN TENSORS FOR HIGH PERFORMANCE: MULTIPLICATION WITH SYMMETRIC TENSORS
    Schatz, Martin D.
    Low, Tze Meng
    van de Geijn, Robert A.
    Kolda, Tamara G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05): : C453 - C479
  • [48] On Symmetric Killing Tensors and Codazzi Tensors of Ranks p ≥ 2
    Stepanov S.E.
    Aleksandrova I.A.
    Tsyganok I.I.
    Journal of Mathematical Sciences, 2023, 276 (3) : 443 - 469
  • [49] PARTIALLY SYMMETRIC NONNEGATIVE RECTANGULAR TENSORS AND COPOSITIVE RECTANGULAR TENSORS
    Gu, Yining
    Wu, Wei
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (02) : 775 - 789
  • [50] Generalized inverses of tensors via a general product of tensors
    Sun, Lizhu
    Zheng, Baodong
    Wei, Yimin
    Bu, Changjiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (04) : 893 - 911