Dynamical noncommutative quantum mechanics

被引:11
|
作者
Alavi, S. A. [1 ]
Abbaspour, S. [1 ]
机构
[1] Hakim Sabzevari Univ, Dept Phys, Sabzevar, Iran
关键词
dynamical noncommutative spaces; quantum mechanics; strings; HYDROGEN-ATOM;
D O I
10.1088/1751-8113/47/4/045303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study some basic and interesting quantum mechanical systems in dynamical noncommutative spaces in which the space-space commutation relations are position dependent. It is observed that the fundamental objects in the dynamical noncommutative space introduced here are string-like. We show that the Stark effect can be employed to determine whether the noncommutativity of space is dynamical or non-dynamical. It appears that unlike a non-dynamical case there is a fundamental energy tau h(2)/m in this dynamical space.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] On uncertainty relations in noncommutative quantum mechanics
    Bolonek, K
    Kosinski, P
    PHYSICS LETTERS B, 2002, 547 (1-2) : 51 - 54
  • [32] Magnetic fields in noncommutative quantum mechanics
    Delduc, F.
    Duret, Q.
    Gieres, F.
    Lefrancois, M.
    INTERNATIONAL CONFERENCE ON NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2008, 103
  • [33] Commutator anomaly in noncommutative quantum mechanics
    Dulat, Sayipjamal
    Li, Kang
    MODERN PHYSICS LETTERS A, 2006, 21 (39) : 2971 - 2976
  • [34] Noncommutative dynamical models with quantum symmetries
    Dutriaux, Antoine
    Gurevich, Dimitri
    ACTA APPLICANDAE MATHEMATICAE, 2008, 101 (1-3) : 85 - 104
  • [35] Quantum mechanics on the noncommutative plane and sphere
    Nair, VP
    Polychronakos, AP
    PHYSICS LETTERS B, 2001, 505 (1-4) : 267 - 274
  • [36] Wigner Measures in Noncommutative Quantum Mechanics
    C. Bastos
    N. C. Dias
    J. N. Prata
    Communications in Mathematical Physics, 2010, 299 : 709 - 740
  • [37] The HMW effect in noncommutative quantum mechanics
    Wang, Jianhua
    Li, Kang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (09) : 2197 - 2202
  • [38] Path integrals in noncommutative quantum mechanics
    Dragovich, B
    Rakic, Z
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 140 (03) : 1299 - 1308
  • [39] Contextuality and Noncommutative Geometry in Quantum Mechanics
    Nadish de Silva
    Rui Soares Barbosa
    Communications in Mathematical Physics, 2019, 365 : 375 - 429
  • [40] Deformation quantization of noncommutative quantum mechanics
    Jing, SC
    Zuo, F
    Heng, TH
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10):