Structural Comparison of DNA Polymerase Architecture Suggests a Nucleotide Gateway to the Polymerase Active Site

被引:37
|
作者
Wu, Sangwook [1 ]
Beard, William A. [2 ]
Pedersen, Lee G. [1 ]
Wilson, Samuel H. [2 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[2] NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA
基金
美国国家卫生研究院;
关键词
DEOXYRIBONUCLEIC-ACID; CRYSTAL-STRUCTURES; LARGE FRAGMENT; MECHANISM; BETA; REPLICATION; SUBSTRATE; INSERTION; INSIGHTS; BINDING;
D O I
10.1021/cr3005179
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The review demonstrates that structural comparison of DNA polymerase architecture suggests a nucleotide gateway to the polymerase active site. The identity, crystallographic structures, accessory domains, and biological function of the polymerases have been analyzed. Investigations reveal that the polymerase domain of most DNA polymerases is comprised of three subdomains. The architectural arrangement of the subdomains of A-, B-, and Y-family DNA polymerases has been compared to a right hand and is referred to as fingers, palm, and thumb. The palm subdomains are homologous despite the structures of the fingers and thumb subdomains being distinct among these families. The active site acidic residues that coordinate two divalent metals necessary for nucleotidyl transfer are found in the palm subdomain.
引用
收藏
页码:2759 / 2774
页数:16
相关论文
共 50 条
  • [21] Structural basis for the selective incorporation of an artificial nucleotide opposite a DNA adduct by a DNA polymerase
    Betz, K.
    Nilforoushan, A.
    Wyss, L. A.
    Diederichs, K.
    Sturla, S. J.
    Marx, A.
    CHEMICAL COMMUNICATIONS, 2017, 53 (94) : 12704 - 12707
  • [22] Fluorous base-pairing effects in a DNA polymerase active site
    Lai, JS
    Kool, ET
    CHEMISTRY-A EUROPEAN JOURNAL, 2005, 11 (10) : 2966 - 2971
  • [23] Kinetic Mechanism of Active Site Assembly and Chemical Catalysis of DNA Polymerase β
    Balbo, Paul B.
    Wang, Eric Chun-Wei
    Tsai, Ming-Daw
    BIOCHEMISTRY, 2011, 50 (45) : 9865 - 9875
  • [24] Sustained active site rigidity during synthesis by human DNA polymerase μ
    Moon, Andrea F.
    Pryor, John M.
    Ramsden, Dale A.
    Kunkel, Thomas A.
    Bebenek, Katarzyna
    Pedersen, Lars C.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2014, 21 (03) : 253 - 260
  • [25] Sustained active site rigidity during synthesis by human DNA polymerase μ
    Andrea F Moon
    John M Pryor
    Dale A Ramsden
    Thomas A Kunkel
    Katarzyna Bebenek
    Lars C Pedersen
    Nature Structural & Molecular Biology, 2014, 21 : 253 - 260
  • [26] PHEASANT VIRUS-DNA POLYMERASE IS RELATED TO AVIAN-LEUKOSIS VIRUS-DNA POLYMERASE AT THE ACTIVE-SITE
    BAUER, G
    TEMIN, HM
    JOURNAL OF VIROLOGY, 1979, 32 (01) : 78 - 90
  • [27] Polymerase active-site mutants of DNA polymerase-delta increase cancer incidence in mice.
    Venkatesan, R. N.
    Treuting, P. M.
    Fuller, E. D.
    Ladiges, W. C.
    Preston, B. D.
    Loeb, L. A.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2006, 47 (06) : 465 - 465
  • [28] Mechanistic Insight through Irreversible Inhibition: DNA Polymerase θ Uses a Common Active Site for Polymerase and Lyase Activities
    Laverty, Daniel J.
    Mortimer, Ifor P.
    Greenberg, Marc M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (29) : 9034 - 9037
  • [29] The architecture of yeast DNA polymerase zeta
    Malik, Radhika
    Llorente, Yacob
    Jain, Rinku
    Choudhary, Jayati
    Johnson, Robert
    Prakash, Louise
    Prakash, Satya
    Ubarretxena-Belandia, Iban
    Aggarwal, Aneel
    FASEB JOURNAL, 2014, 28 (01):
  • [30] Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment)
    Minnick, DT
    Bebenek, K
    Osheroff, WP
    Turner, RM
    Astatke, M
    Liu, LX
    Kunkel, TA
    Joyce, CM
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (05) : 3067 - 3075