SOLUTIONS TO NONLINEAR RECURRENCE EQUATIONS

被引:2
|
作者
Withers, Christopher S. [1 ]
Nadarajah, Saralees [2 ]
机构
[1] Callaghan Innovat, Lower Hutt, New Zealand
[2] Univ Manchester, Manchester, England
关键词
exact solutions; logistic map; Mandelbrot equation;
D O I
10.1216/rmj.2022.52.2153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F(z) be any function. Suppose that w is a fixed point of F(z), that is, F(w) = w. Then the recurrence equationxn+1 = F(xn)for n = 0, 1, 2, ... has a solution of the formxn(w) = w + P infinity i=1 ai 1AiF.1(w)in,where F.1(z) = d F(z)/dz. So, for each w there is a set of complex x0 such that x0(w) = x0. We assume that F(z) is analytic at w. This solution appears to be new, even for such famous examples like the logistic map and the Mandelbrot equation.
引用
收藏
页码:2153 / 2168
页数:16
相关论文
共 50 条
  • [41] SOLUTIONS FOR NONLINEAR-SYSTEMS OF EQUATIONS
    MAYER, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (05): : T499 - T500
  • [42] EXACT SOLUTIONS OF NONLINEAR ELECTRODYNAMIC EQUATIONS
    PUCHKOVA, NG
    SOVIET PHYSICS TECHNICAL PHYSICS-USSR, 1970, 14 (08): : 1034 - &
  • [43] BOUNDS FOR SOLUTIONS OF NONLINEAR INTEGRODIFFERENTIAL EQUATIONS
    MULDOWNE.JS
    WONG, JSW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 23 (03) : 487 - &
  • [44] Stabilization of solutions to nonlinear Schrodinger equations
    Cuccagna, S
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (09) : 1110 - 1145
  • [45] ON PRINCIPAL SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS
    LADAS, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 149 - &
  • [46] Normalized solutions of nonlinear Schrodinger equations
    Bartsch, Thomas
    de Valeriola, Sebastien
    ARCHIV DER MATHEMATIK, 2013, 100 (01) : 75 - 83
  • [47] Positive solutions of nonlinear elliptic equations
    Wong, F. H.
    Wang, S. P.
    Yeh, C. C.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (03) : 298 - 302
  • [48] Solitary wave solutions of nonlinear equations
    Yang, Jinlong
    Han, Rongsheng
    Li, Tongzhong
    Wang, Kelin
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 239 (06): : 359 - 363
  • [49] Nonlinear wave equations and singular solutions
    Yamane, Hideshi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (11) : 3659 - 3667
  • [50] SMALL SOLUTIONS OF NONLINEAR FREDHOLM EQUATIONS
    KHIMSHIASHVILI, GN
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1977, (02): : 27 - 31