ATTRACTIVITY FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER AND ψ-HILFER TYPE

被引:23
|
作者
Sousa, J. Vanterler da C. [1 ]
Benchohra, Mouffak [2 ]
N'Guerekata, Gaston M. [3 ]
机构
[1] Univ Estadual Campinas, Imecc, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Morgan State Univ, NEERLab, Dept Math, Baltimore, MD 21251 USA
关键词
psi-Hilfer fractional derivative; fractional differential equations; global attractivity: Krasnoselskii's fixed point; GLOBAL ATTRACTIVITY; EVOLUTION-EQUATIONS; EXISTENCE; STABILITY;
D O I
10.1515/fca-2020-0060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the overall solution attractivity of the fractional differential equation involving the psi-Hilfer fractional derivative and using the Krasnoselskii's fixed point theorem. We highlight some particular cases of the results presented here, especially involving the Riemann-Liouville, thus illustrating the broad class of fractional derivatives to which these results can be applied.
引用
收藏
页码:1188 / 1207
页数:20
相关论文
共 50 条
  • [41] Attractivity and Global Attractivity for System of Fractional Functional and Nonlinear Fractional q-Differential Equations
    Samei, M. E.
    Ranjbar, G. K.
    Susahab, D. Nazari
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (02)
  • [42] Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type
    S Abbas
    M Benchohra
    JE Lagreg
    A Alsaedi
    Y Zhou
    Advances in Difference Equations, 2017
  • [43] EXISTENCE AND STABILITY RESULTS FOR DIFFERENTIAL EQUATIONS WITH COMPLEX ORDER INVOLVING HILFER FRACTIONAL DERIVATIVE
    Harikrishnan, S.
    Kanagarajan, K.
    Elsayed, E. M.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 10 (01): : 94 - 101
  • [44] Existence results of ψ-Hilfer integro-differential equations with fractional order in Banach space
    Almalahi, Mohammed A.
    Panchal, Satish K.
    ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2020, 19 (01) : 171 - 192
  • [45] Attractivity of implicit differential equations with composite fractional derivative
    Vivek, Devaraj
    Elsayed, Elsayed M.
    Kanagarajan, Kuppusamy
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (01) : 151 - 158
  • [46] On the controllability of Hilfer-Katugampola fractional differential equations
    Abbas, Mohamed, I
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2020, 24 (02): : 195 - 204
  • [47] On the (k, ?)-Hilfer nonlinear impulsive fractional differential equations
    Kharade, Jyoti P.
    Kucche, Kishor D.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (15) : 16282 - 16304
  • [48] Hilfer fractional stochastic integro-differential equations
    Ahmed, Hamdy M.
    El-Borai, Mahmoud M.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 : 182 - 189
  • [49] On the impulsive implicit ψ-Hilfer fractional differential equations with delay
    Kharade, Jyoti P.
    Kucche, Kishor D.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (04) : 1938 - 1952
  • [50] The Regional Enlarged Observability for Hilfer Fractional Differential Equations
    Elbukhari, Abu Bakr
    Fan, Zhenbin
    Li, Gang
    AXIOMS, 2023, 12 (07)