ATTRACTIVITY FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER AND ψ-HILFER TYPE

被引:23
|
作者
Sousa, J. Vanterler da C. [1 ]
Benchohra, Mouffak [2 ]
N'Guerekata, Gaston M. [3 ]
机构
[1] Univ Estadual Campinas, Imecc, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Morgan State Univ, NEERLab, Dept Math, Baltimore, MD 21251 USA
关键词
psi-Hilfer fractional derivative; fractional differential equations; global attractivity: Krasnoselskii's fixed point; GLOBAL ATTRACTIVITY; EVOLUTION-EQUATIONS; EXISTENCE; STABILITY;
D O I
10.1515/fca-2020-0060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the overall solution attractivity of the fractional differential equation involving the psi-Hilfer fractional derivative and using the Krasnoselskii's fixed point theorem. We highlight some particular cases of the results presented here, especially involving the Riemann-Liouville, thus illustrating the broad class of fractional derivatives to which these results can be applied.
引用
收藏
页码:1188 / 1207
页数:20
相关论文
共 50 条
  • [1] Attractivity for Differential Equations of Fractional order and ψ-Hilfer Type
    J. Vanterler da C. Sousa
    Mouffak Benchohra
    Gaston M. N’Guérékata
    Fractional Calculus and Applied Analysis, 2020, 23 : 1188 - 1207
  • [2] On Existence and Attractivity of ψ-Hilfer Hybrid Fractional-order Langevin Differential Equations
    Rathee, Savita
    Narwal, Yogeeta
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [3] Existence and Attractivity Results for Hilfer Fractional Differential Equations
    Abbas S.
    Benchohra M.
    Henderson J.
    Journal of Mathematical Sciences, 2019, 243 (3) : 347 - 357
  • [4] Existence and attractivity results for ψ-Hilfer hybrid fractional differential equations
    Bachir, Fatima Si
    Abbas, Said
    Benbachir, Maamar
    Benchohra, Mouffak
    N'Guerekata, Gaston M.
    CUBO-A MATHEMATICAL JOURNAL, 2021, 23 (01): : 145 - 159
  • [5] Attractivity for Hilfer fractional stochastic evolution equations
    Yang, Min
    Alsaedi, Ahmed
    Ahmad, Bashir
    Zhou, Yong
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [6] Attractivity for Hilfer fractional stochastic evolution equations
    Min Yang
    Ahmed Alsaedi
    Bashir Ahmad
    Yong Zhou
    Advances in Difference Equations, 2020
  • [7] The Stability and Global Attractivity of Fractional Differential Equations with the Ψ-Hilfer Derivative in the Context of an Economic Recession
    Jeelani, Mdi Begum
    Hafeez, Farva
    Alqahtani, Nouf Abdulrahman
    FRACTAL AND FRACTIONAL, 2025, 9 (02)
  • [8] On Hilfer-Type Fractional Impulsive Differential Equations
    Metpattarahiran, Chanisara
    Karthikeyan, Kulandhaivel
    Karthikeyann, Panjaiyan
    Sitthiwirattham, Thanin
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022
  • [9] Stability analysis for fractional order implicit ψ-Hilfer differential equations
    Asma
    Francisco Gomez-Aguilar, Jose
    Rahman, Ghaus Ur
    Javed, Maryam
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (05) : 2701 - 2712
  • [10] Stability analysis of Hilfer fractional-order differential equations
    Abhiram Hegade
    Sachin Bhalekar
    The European Physical Journal Special Topics, 2023, 232 : 2357 - 2365