Identification of Isomeric N-Glycans by Conformer Distribution Fingerprinting using Ion Mobility Mass Spectrometry

被引:18
|
作者
Torano, Javier Sastre [1 ]
Aizpurua-Olaizola, Oier [1 ,5 ]
Wei, Na [2 ]
Li, Tiehai [2 ]
Unione, Luca [1 ]
Jimenez-Oses, Gonzalo [3 ]
Corzana, Francisco [4 ]
Somovilla, Victor J. [1 ]
Falcon-Perez, Juan M. [5 ]
Boons, Geert-Jan [1 ,2 ]
机构
[1] Univ Utrecht, Utrecht Inst Pharmaceut Sci, Dept Chem Biol & Drug Discovery, Utrecht, Netherlands
[2] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA
[3] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Biosci CIC BioGUNE, Bizkaia Technol Pk,Bldg 801A, Derio 48160, Spain
[4] Univ La Rioja, Ctr Invest Sintesis Quim, Dept Quim, Logrono 26006, Spain
[5] CIBERehd, Exosomes Lab, CIC BioGUNE, Derio, Spain
关键词
carbohydrates; chemo-enzymatic synthesis; conformations; ion mobility spectrometry; mass spectrometry; molecular dynamics; COLLISION CROSS-SECTIONS; CHEMOENZYMATIC SYNTHESIS; GLYCOSYLATION; SIALYLGLYCOPEPTIDE; OLIGOSACCHARIDES;
D O I
10.1002/chem.202004522
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Glycans possess unparalleled structural complexity arising from chemically similar monosaccharide building blocks, configurations of anomeric linkages and different branching patterns, potentially giving rise to many isomers. This level of complexity is one of the main reasons that identification of exact glycan structures in biological samples still lags behind that of other biomolecules. Here, we introduce a methodology to identify isomeric N-glycans by determining gas phase conformer distributions (CDs) by measuring arrival time distributions (ATDs) using drift-tube ion mobility spectrometry-mass spectrometry. Key to the approach is the use of a range of well-defined synthetic glycans that made it possible to investigate conformer distributions in the gas phase of isomeric glycans in a systematic manner. In addition, we have computed CD fingerprints by molecular dynamics (MD) simulation, which compared well with experimentally determined CDs. It supports that ATDs resemble conformational populations in the gas phase and offer the prospect that such an approach can contribute to generating a library of CCS distributions (CCSDs) for structure identification.
引用
收藏
页码:2149 / 2154
页数:6
相关论文
共 50 条
  • [21] Capillary zone electrophoresis coupled to drift tube ion mobility-mass spectrometry for the analysis of native and APTS-labeled N-glycans
    Jooss, Kevin
    Meckelmann, Sven W.
    Klein, Julia
    Schmitz, Oliver J.
    Neusuess, Christian
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2019, 411 (24) : 6255 - 6264
  • [22] Capillary zone electrophoresis coupled to drift tube ion mobility-mass spectrometry for the analysis of native and APTS-labeled N-glycans
    Kevin Jooß
    Sven W. Meckelmann
    Julia Klein
    Oliver J. Schmitz
    Christian Neusüß
    Analytical and Bioanalytical Chemistry, 2019, 411 : 6255 - 6264
  • [23] Differentiation between isomeric triantennary N-linked glycans by negative ion tandem mass spectrometry and confirmation of glycans containing galactose attached to the bisecting (β1-4-GlcNAc) residue in N-glycans from IgG
    Harvey, David J.
    Crispin, Max
    Scanlan, Chris
    Singer, Bernhard B.
    Lucka, Lothar
    Chang, Veronica T.
    Radcliffe, Catherine M.
    Thobhani, Smita
    Yuen, Chun-Ting
    Rudd, Pauline M.
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2008, 22 (07) : 1047 - 1052
  • [24] Improved Identification of Isomeric Steroids Using the Paterno-Buchi Reaction with Ion Mobility-Mass Spectrometry
    Maddox, Samuel W.
    Olsen, Stine S. H.
    Velosa, Diana C.
    Burkus-Matesevac, Aurora
    Peverati, Roberto
    Chouinard, Christopher D.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2020, 31 (10) : 2086 - 2092
  • [25] Identification of carbohydrate anomers using ion mobility–mass spectrometry
    J. Hofmann
    H. S. Hahm
    P. H. Seeberger
    K. Pagel
    Nature, 2015, 526 : 241 - 244
  • [26] Multiplex Mass Spectrometry Imaging of N-Glycans, Glycogen, Lipid, and Small Metabolites
    Clarke, Harrison A.
    Conroy, Lindsey R.
    Young, Lyndsay E. A.
    Hawkinson, Tara R.
    Allison, Derek B.
    Sun, Ramon C.
    GLYCOBIOLOGY, 2022, 32 (11) : 1017 - 1017
  • [27] Development of structural analyses of sulfated N-glycans by mass spectrometry and HPLC mapping
    Yagi, H
    Takahashi, N
    Yamaguchi, Y
    Kimura, N
    Kannagi, R
    Kato, K
    GLYCOBIOLOGY, 2004, 14 (11) : 1071 - 1072
  • [28] Mass spectrometry analysis reveals aberrant N-glycans in colorectal cancer tissues
    Zhang, Dongmei
    Xie, Qing
    Wang, Qian
    Wang, Yanping
    Miao, Jinsheng
    Li, Ling
    Zhang, Tong
    Cao, Xiufeng
    Li, Yunsen
    GLYCOBIOLOGY, 2019, 29 (05) : 372 - 384
  • [29] Identification of N-glycans with GalNAc-containing antennae from recombinant HIV trimers by ion mobility and negative ion fragmentation
    David J. Harvey
    Anna-Janina Behrens
    Max Crispin
    Weston B. Struwe
    Analytical and Bioanalytical Chemistry, 2021, 413 : 7229 - 7240
  • [30] Identification of N-glycans with GalNAc-containing antennae from recombinant HIV trimers by ion mobility and negative ion fragmentation
    Harvey, David J.
    Behrens, Anna-Janina
    Crispin, Max
    Struwe, Weston B.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2021, 413 (29) : 7229 - 7240