A hybrid resist hemispherical-pit array layer for Light trapping in thin film silicon solar cells via UV nanoimprint lithography

被引:11
|
作者
Wangyang, Peihua [1 ]
Gan, Yanchang [2 ]
Wang, Qingkang [1 ]
Jiang, Xuesong [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Key Lab Thin Film & Microfabricat Technol, Dept Microelect & Nanosci,Minist Educ, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
关键词
MICROCRYSTALLINE SILICON; ANTIREFLECTIVE COATINGS; TCO; SUBSTRATE; DESIGN; ZNO;
D O I
10.1039/c4tc00605d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we report micromorph tandem solar cells coated with a hemispherical-pit (HP) array layer, which traps light and consequently enhances the efficiency. A quartz mold for ultraviolet nanoimprint lithography (UV-NIL) was fabricated by combining UV photolithography and wet-etching technology, and the HP arrays were then transferred onto the tandem solar cells through UV-NIL. The HP array layer could simultaneously reduce the average reflectance of the tandem solar cells from 7.7% to 1.8%, and effectively enhance light trapping by scattering more incident light into the tandem solar cells. A relative improvement of the efficiency of the tandem solar cells coated with the HP array layer is up to 4.1% as compared to the reference device. The current voltage characteristics of the tandem solar cells as a function of incident angle were also investigated. The power conversion efficiency of the tandem solar cells coated with the HP array layer is always higher than that of the reference with the same incident angle. The results further show that the HP array layer can effectively decrease the reflectance and scatter more incident light into the solar cells at larger angles not only for normal incidence but also for the obliquely incident light. The external quantum efficiency (EQE) of the tandem solar cells coated with the HP array layer was also investigated as well as the reference tandem solar cells. The possible physical mechanism behind the observation is also discussed in this work.
引用
收藏
页码:6140 / 6147
页数:8
相关论文
共 50 条
  • [21] Effects of film growth modes on light trapping in silicon thin film solar cells
    Wiesendanger, S.
    Bischoff, T.
    Jovanov, V.
    Knipp, D.
    Burger, S.
    Lederer, F.
    Rockstuhl, C.
    APPLIED PHYSICS LETTERS, 2014, 104 (23)
  • [22] Nanoimprint Photonic Crystal Film Enhanced light-trapping in a-Si thin Film Solar Cells
    Chu, Wei-Ping
    Juang, Fuh-Shyang
    Lin, Jian-Shian
    Lin, Tien-Chai
    Kuo, Chen-Wei
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 497 - +
  • [23] Plasmon Enhanced Light Trapping for Thin Film Silicon Solar Cells Application
    Pudasaini, Pushpa Raj
    Ayon, Arturo A.
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012,
  • [24] Dielectric Metasurface Light Trapping Structure for Silicon Thin Film Solar Cells
    Zhou, Yifan
    Xu, Bin
    Lu, Hengchang
    He, Yizhou
    Jiang, Ting
    Guo, Xiaowei
    2021 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2021), 2021, : 2608 - 2611
  • [25] Microstructured design for light trapping in thin-film silicon solar cells
    Chen, Jian
    Wang, Qingkang
    Li, Haihua
    OPTICAL ENGINEERING, 2010, 49 (08)
  • [26] Broadband light trapping in nanopatterned thin film amorphous silicon solar cells
    Martella, C.
    Mennucci, C.
    Giordano, M. C.
    de Mongeot, F. Buatier
    Veneri, P. Delli
    Mercaldo, L. V.
    Usatii, I.
    2014 THIRD MEDITERRANEAN PHOTONICS CONFERENCE, 2014,
  • [27] Highly efficient silicon thin film solar cells with advanced light trapping
    Rech, B
    Schöpe, G
    Kluth, O
    Repmann, T
    Roschek, T
    Müller, J
    Hüpkes, J
    Stiebig, H
    PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 2783 - 2788
  • [28] Double texturations for light trapping in Thin Film Crystalline Silicon Solar Cells
    Meng, Xianqin
    Drouard, Emmanuel
    Gomard, Guillaume
    Depauw, Valerie
    Kleiman, Rafael
    Seassal, Christian
    2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 622 - 624
  • [29] Light trapping in thin-film silicon solar cells with photonic structures
    Andreani, Lucio Claudio
    Bozzola, Angelo
    Kowalczewski, Piotr
    Liscidini, Marco
    PHOTONIC CRYSTAL MATERIALS AND DEVICES XI, 2014, 9127
  • [30] Thermodynamic limits of nanophotonic light trapping in thin film silicon solar cells
    Maynard, Brian R.
    Schiff, E. A.
    CANADIAN JOURNAL OF PHYSICS, 2014, 92 (7-8) : 909 - 912