SEMI-SUPERVISED DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL REMOTE SENSING IMAGE CLASSIFICATION

被引:0
|
作者
Xia, Junshi [1 ,3 ]
Chanussot, Jocelyn [1 ]
Du, Peijun [2 ,3 ]
He, Xiyan [1 ]
机构
[1] Domaine Univ, Grenoble Inst Technol, GIPSA Lab, BP 46, F-38402 St Martin Dheres, France
[2] Nanjing Univ, Dept Geog Informat Sci, Nanjing 210093, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Key Lab Land Environm & Disaster Monitoring SBSM, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised; Dimensionality reduction; hyperspectral remote sensing; classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Class labels and pairwise constraints are adopted as the prior information to present the semi-supervised dimensionality reduction for hyperspectral image. In this paper, we extend semi-supervised probabilistic principal component analysis (S(2)PPCA), semi-supervised local fisher discriminant analysis (S(2)LFDA) and semi-supervised dimensionality reduction with pairwise constraints (S(2)DRpc) to extract the features of hyperspectral image. These semi-supervised dimensionality reduction approaches are compared with PCA in classification task. Experimental results show that semi-supervised algorithms of S(2)PPCA and S(2)DRpc are superior to PCA.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] SEMI-SUPERVISED SPARSE DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhang, Xiangrong
    Ning Huyan
    Thou, Nan
    An, Jinliang
    [J]. PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 2830 - 2833
  • [2] SEMI-SUPERVISED CONDITIONAL RANDOM FIELD FOR HYPERSPECTRAL REMOTE SENSING IMAGE CLASSIFICATION
    Wu, Junfeng
    Jiang, Zhiguo
    Zhang, Haopeng
    Cai, Bowen
    Wei, Quanmao
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2614 - 2617
  • [3] Semi-supervised classification method for hyperspectral remote sensing images
    Gomez-Chova, L
    Calpe, J
    Camps-Valls, G
    Martín, JD
    Soria, E
    Vila, J
    Alonso-Chorda, L
    Moreno, J
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1776 - 1778
  • [4] Advances in semi-supervised classification of hyperspectral remote sensing images
    Yang, Xing
    Fang, Leyuan
    Yue, Jun
    [J]. National Remote Sensing Bulletin, 2024, 28 (01) : 19 - 41
  • [5] SEMI-SUPERVISED FEATURE LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION
    Yin, Xiaoshuang
    Yang, Wen
    Xia, Gui-Song
    Dong, Lixia
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1261 - 1264
  • [6] SEMI-SUPERVISED REMOTE SENSING IMAGE CLASSIFICATION METHODS ASSESSMENT
    Negri, Rogerio Galante
    Siqueia Sant'Anna, Sidnei Joao
    Dutra, Luciano Vieira
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2939 - 2942
  • [7] Semi-supervised dimensionality reduction for image retrieval
    Zhang, Bin
    Song, Yangqiu
    Yin, Wenjun
    Xie, Ming
    Dong, Jin
    Zhang, Changshui
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2008, PTS 1 AND 2, 2008, 6822
  • [8] Dimensionality Reduction and Classification of Hyperspectral Remote Sensing Image Feature Extraction
    Li, Hongda
    Cui, Jian
    Zhang, Xinle
    Han, Yongqi
    Cao, Liying
    [J]. REMOTE SENSING, 2022, 14 (18)
  • [9] Semi-supervised Hyperspectral Image Classification with Graphs
    Bandos, Tatyana V.
    Zhou, Dengyong
    Camps-Valls, Gustavo
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 3883 - +
  • [10] Semi-supervised Classification for Remote Sensing Datasets
    Hernandez-Sequeira, Itza
    Fernandez-Beltran, Ruben
    Xu, Yonghao
    Ghamisi, Pedram
    Pla, Filiberto
    [J]. IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 463 - 474