Semi-supervised Hyperspectral Image Classification with Graphs

被引:8
|
作者
Bandos, Tatyana V. [1 ]
Zhou, Dengyong [2 ]
Camps-Valls, Gustavo [1 ]
机构
[1] Univ Valencia, Dept Elect Engn, C Dr Moliner 50, E-46100 Valencia, Spain
[2] NEC Lab America, Princeton, NJ 08540 USA
关键词
D O I
10.1109/IGARSS.2006.996
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents a semi-supervised graph-based method for the classification of hyperspectral images. The method is designed to exploit the spatial/contextual information in the images through composite kernels. The proposed method produces smoother classifications with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. Good accuracy in high dimensional spaces and low number of labeled samples (ill-posed situations) are produced as compared to standard inductive support vector machines.
引用
收藏
页码:3883 / +
页数:2
相关论文
共 50 条
  • [1] SEMI-SUPERVISED LEARNING WITH GRAPHS: COVARIANCE BASED SUPERPIXELS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Sellars, Philip
    Aviles-Rivero, Angelica I.
    Papadakis, Nicolas
    Coomes, David
    Faul, Anita
    Schonlieb, Carola-Bibiane
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 592 - 595
  • [2] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    [J]. REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [3] Semi-supervised feature learning for hyperspectral image classification
    Zhang, Pengfei
    Cao, Liujuan
    Wang, Cheng
    Li, Jonathan
    [J]. 2ND ISPRS INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING (CVRS 2015), 2016, 9901
  • [4] Semi-Supervised Hyperspectral Image Classification with Multiscale Kernels
    Cui, Li
    Liu, Lu
    Chen, Di-Rong
    [J]. INTERNATIONAL CONFERENCE ON CIVIL, MECHANICAL AND MATERIAL ENGINEERING (ICCMME 2018), 2018, 1973
  • [5] Semi-supervised hierarchical Transformer for hyperspectral Image classification
    He, Ziping
    Zhu, Qianglin
    Xia, Kewen
    Ghamisi, Pedram
    Zu, Baokai
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (01) : 21 - 50
  • [6] A semi-supervised convolutional neural network for hyperspectral image classification
    Liu, Bing
    Yu, Xuchu
    Zhang, Pengqiang
    Tan, Xiong
    Yu, Anzhu
    Xue, Zhixiang
    [J]. REMOTE SENSING LETTERS, 2017, 8 (09) : 839 - 848
  • [7] SEMI-SUPERVISED SPARSE DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhang, Xiangrong
    Ning Huyan
    Thou, Nan
    An, Jinliang
    [J]. PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 2830 - 2833
  • [8] Combining Semi-Supervised and Active Learning for Hyperspectral Image Classification
    Li, Mingzhi
    Wang, Rui
    Tang, Ke
    [J]. 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2013, : 89 - 94
  • [9] SEMI-SUPERVISED DISCRIMINATIVE RANDOM FIELD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. 2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [10] Unified active and semi-supervised learning for hyperspectral image classification
    Wang, Zengmao
    Du, Bo
    [J]. GEOINFORMATICA, 2023, 27 (01) : 23 - 38