Gate-controlled conductance switching in DNA

被引:105
|
作者
Xiang, Limin [1 ,2 ]
Palma, Julio L. [1 ,2 ,3 ]
Li, Yueqi [1 ,2 ]
Mujica, Vladimiro [2 ]
Ratner, Mark A. [4 ]
Tao, Nongjian [1 ,5 ]
机构
[1] Arizona State Univ, Biodesign Inst, Biodesign Ctr Biosensors & Bioelect, Tempe, AZ 85287 USA
[2] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA
[3] Penn State Univ, Dept Chem, Eberly Campus,2201 Univ Dr, Lemont Furnace, PA 15456 USA
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[5] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
关键词
SINGLE-MOLECULE CONDUCTANCE; SCANNING-TUNNELING-MICROSCOPY; ELECTRON-TRANSFER; QUANTUM INTERFERENCE; CHARGE-TRANSPORT; MEDIATED ELECTROCHEMISTRY; JUNCTION CONDUCTANCE; DENSITY FUNCTIONALS; REDOX MOLECULES; BREAK JUNCTION;
D O I
10.1038/ncomms14471
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extensive evidence has shown that long-range charge transport can occur along double helical DNA, but active control (switching) of single-DNA conductance with an external field has not yet been demonstrated. Here we demonstrate conductance switching in DNA by replacing a DNA base with a redox group. By applying an electrochemical (EC) gate voltage to the molecule, we switch the redox group between the oxidized and reduced states, leading to reversible switching of the DNA conductance between two discrete levels. We further show that monitoring the individual conductance switching allows the study of redox reaction kinetics and thermodynamics at single molecular level using DNA as a probe. Our theoretical calculations suggest that the switch is due to the change in the energy level alignment of the redox states relative to the Fermi level of the electrodes.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Gate-Controlled P-I-N Junction Switching Device with Graphene Nanoribbon
    Nakaharai, Shu
    Iijima, Tomohiko
    Ogawa, Shinichi
    Miyazaki, Hisao
    Li, Songlin
    Tsukagoshi, Kazuhito
    Sato, Shintaro
    Yokoyama, Naoki
    [J]. APPLIED PHYSICS EXPRESS, 2012, 5 (01)
  • [22] Gate-controlled guiding of electrons in graphene
    Williams, J. R.
    Low, Tony
    Lundstrom, M. S.
    Marcus, C. M.
    [J]. NATURE NANOTECHNOLOGY, 2011, 6 (04) : 222 - 225
  • [23] GATE-CONTROLLED MOS VARIABLE CAPACITORS
    IMABUN, Y
    [J]. ELECTRICAL ENGINEERING IN JAPAN, 1973, 93 (03) : 123 - 128
  • [24] A schematic gate-controlled thyristor model
    Voronin P.A.
    Rashitov P.A.
    Astashev M.G.
    Remizevich T.V.
    [J]. Russian Electrical Engineering, 2015, 86 (9) : 553 - 562
  • [25] Gate-controlled light emitting diodes
    Namdas, Ebinazar B.
    Swensen, James S.
    Ledochowitsch, Peter
    Yuen, Jonathan D.
    Moses, Daniel
    Heeger, Alan J.
    [J]. ADVANCED MATERIALS, 2008, 20 (07) : 1321 - +
  • [26] GEOMETRIC EFFECTS ON THE GATE-CONTROLLED CAPACITOR
    SLUTSKY, EB
    ZEMEL, JN
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1980, 27 (09) : 1843 - 1846
  • [27] Gate-controlled current switch in graphene
    Saaskilahti, Kimmo
    Harju, Ari
    Pasanen, Pirjo
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (09)
  • [28] SWITCHING ANALYSIS OF GATE-CONTROLLED SPACE-CHARGE-LIMITED EMISSION PROCESSES IN SEMICONDUCTORS
    WILLIAMS, RC
    [J]. RCA REVIEW, 1965, 26 (01): : 118 - +
  • [29] A feedback silicon-on-insulator steep switching device with gate-controlled carrier injection
    Wan, J.
    Cristoloveanu, S.
    Le Royer, C.
    Zaslavsky, A.
    [J]. SOLID-STATE ELECTRONICS, 2012, 76 : 109 - 111
  • [30] Gate-controlled Active Graphene Metamaterials
    Lee, Seung Hoon
    Choi, Muhan
    Kim, Teun-Teun
    Lee, Seungwoo
    Liu, Ming
    Yin, Xiaobo
    Choi, Hong Kyw
    Lee, Seung S.
    Choi, Choon-Gi
    Choi, Sung-Yool
    Zhang, Xiang
    Mi, Bumki
    [J]. 2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,