Existence and Regularity of Minimizers for Some Spectral Functionals with Perimeter Constraint

被引:34
|
作者
De Philippis, Guido [1 ]
Velichkov, Bozhidar [2 ]
机构
[1] Hausdorff Ctr Math, D-53115 Bonn, Germany
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2014年 / 69卷 / 02期
关键词
Shape optimization; Eigenvalues; Free boundary; Concentration-compactness; SHAPE OPTIMIZATION; DIRICHLET PROBLEMS; MINIMIZATION; EIGENVALUE; LAPLACIAN;
D O I
10.1007/s00245-013-9222-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the shape optimization problem min {lambda(k)(Omega) : Omega subset of R-d, Omega open, P(Omega) = 1, vertical bar Omega vertical bar < +infinity} has a solution for any and dimension d. Moreover, every solution is a bounded connected open set with boundary which is C (1,alpha) outside a closed set of Hausdorff dimension d-8. Our results are more general and apply to spectral functionals of the form f(lambda(k)(Omega), ... ,lambda(kp)(Omega)) for increasing functions f satisfying some suitable bi-Lipschitz type condition.
引用
收藏
页码:199 / 231
页数:33
相关论文
共 50 条
  • [21] Existence and regularity of optimal shapes for spectral functionals with Robin boundary conditions
    Nahon, Mickael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 335 : 69 - 102
  • [22] Existence Results for Minimizers of Parametric Elliptic Functionals
    Guido De Philippis
    Antonio De Rosa
    Francesco Ghiraldin
    The Journal of Geometric Analysis, 2020, 30 : 1450 - 1465
  • [23] Regularity for minimizers of functionals with p-q growth
    Esposito, Luca
    Leonetti, Francesco
    Mingione, Giuseppe
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (02): : 133 - 148
  • [24] Uniform C1,α-Regularity for Almost-Minimizers of Some Nonlocal Perturbations of the Perimeter
    Goldman, M.
    Merlet, B.
    Pegon, M.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (06)
  • [25] On interior regularity of minimizers of p(x)-energy functionals
    Ragusa, Maria Alessandra
    Tachikawa, Atsushi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 : 162 - 167
  • [26] On the existence and uniqueness of minimizers for a class of integral functionals
    Graziano Crasta
    Annalisa Malusa
    Nonlinear Differential Equations and Applications NoDEA, 2005, 12 : 129 - 150
  • [27] PARTIAL REGULARITY FOR MINIMIZERS OF HIGHER ORDER QUASICONVEX FUNCTIONALS
    吴在德
    李君湘
    梁汲廷
    Transactions of Tianjin University, 1997, (01) : 90 - 92
  • [28] Partial regularity of the minimizers of quadratic functionals with VMO coefficients
    Ragusa, MA
    Tachikawa, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 609 - 620
  • [29] Boundary regularity of minimizers of p(x)-energy functionals
    Ragusa, Maria Alessandra
    Tachikawa, Atsushi
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02): : 451 - 476
  • [30] On the existence and uniqueness of minimizers for a class of integral functionals
    Crasta, G
    Malusa, A
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2005, 12 (02): : 129 - 150