Dirichlet quotients and 2D periodic Navier-Stokes equations

被引:22
|
作者
Constantin, P
Foias, C
Kukavica, I
Majda, AJ
机构
[1] INDIANA UNIV,DEPT MATH,BLOOMINGTON,IN 47405
[2] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08540
来源
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; Dirichlet quotients; Euler equation;
D O I
10.1016/S0021-7824(97)89948-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for the periodic 2D Navier-Stokes equations (NSE) the set of initial data for which the solution exists for all negative times and has exponential growth is rather rich. We study this set and show that it is dense in the phase space of the NSE. This yields to a positive answer to a question in [BT]. After an appropriate rescaling the large Reynolds limit dynamics on this set is Eulerian.
引用
收藏
页码:125 / 153
页数:29
相关论文
共 50 条
  • [41] The zero-viscosity limit of the 2D Navier-Stokes equations
    Bona, JL
    Wu, JH
    [J]. STUDIES IN APPLIED MATHEMATICS, 2002, 109 (04) : 265 - 278
  • [42] Controllability of 2D Euler and Navier-Stokes Equations by Degenerate Forcing
    Andrey A. Agrachev
    Andrey V. Sarychev
    [J]. Communications in Mathematical Physics, 2006, 265 : 673 - 697
  • [44] Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains
    Bae, Hyeong-Ohk
    Jin, Bum Ja
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 240 (02) : 508 - 529
  • [45] 2D stochastic Navier-Stokes equations driven by jump noise
    Brzezniak, Zdzislaw
    Hausenblas, Erika
    Zhu, Jiahui
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 79 : 122 - 139
  • [46] Exponential ergodicity for stochastic Burgers and 2D Navier-Stokes equations
    Goldys, B
    Maslowski, B
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 226 (01) : 230 - 255
  • [47] UPPER SEMICONTINUITY OF GLOBAL ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS
    Zhao, Caidi
    Duan, Jinqiao
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03):
  • [48] On whether zero is in the global attractor of the 2D Navier-Stokes equations
    Foias, Ciprian
    Jolly, Michael S.
    Yang, Yong
    Zhang, Bingsheng
    [J]. NONLINEARITY, 2014, 27 (11) : 2755 - 2770
  • [49] Ergodicity of the 2D Navier-Stokes equations with degenerate multiplicative noise
    Zhao Dong
    Xu-hui Peng
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 97 - 118
  • [50] Trajectory attractors for dissipative 2D Euler and Navier-Stokes equations
    V. V. Chepyzhov
    M. I. Vishik
    [J]. Russian Journal of Mathematical Physics, 2008, 15 : 156 - 170