Spectral approximation of the Navier-Stokes equations coupled with the heat equation

被引:0
|
作者
Bernard, J. M. [1 ]
机构
[1] IUT Evry Val Essonne, F-91025 Evry, France
关键词
Spectral methods; Discrete implicit function theorem; Coupled problems;
D O I
10.1016/j.ijnonlinmec.2009.03.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper is devoted to the approximation by spectral methods of a problem for viscous incompressible flows, where the Navier-Stokes equations are coupled with the heat equation. The numerical analysis of theses discretizations uses the discrete implicit function theorem of BREZZI, RAPPAZ and RAVIART that allows us to derive some error estimates. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:581 / 589
页数:9
相关论文
共 50 条
  • [1] SPECTRAL DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS COUPLED WITH THE HEAT EQUATION
    Agroum, Rahma
    Aouadi, Saloua Mani
    Bernardi, Christine
    Satouri, Jamil
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (03): : 621 - 639
  • [2] A SPECTRAL-TAU APPROXIMATION FOR THE STOKES AND NAVIER-STOKES EQUATIONS
    SHEN, J
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1988, 22 (04): : 677 - 693
  • [3] GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS COUPLED WITH THE HEAT EQUATION: EXISTENCE RESULT AND TIME DISCRETE APPROXIMATION
    Deugoue, G.
    Djoko, J. K.
    Fouape, A. C.
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (05): : 2423 - 2458
  • [4] Stabilized spectral element approximation for the Navier-Stokes equations
    Gervasio, P
    Saleri, F
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1998, 14 (01) : 115 - 141
  • [5] A geometric cascade for the spectral approximation of the Navier-Stokes equations
    Romito, M
    [J]. PROBABILITY AND PARTIAL DIFFERENTIAL EQUATIONS IN MODERN APPLIED MATHEMATICS, 2005, 140 : 197 - 212
  • [6] Scalable domain decomposition preconditioner for Navier-Stokes equations coupled with the heat equation
    Aldbaissy, Rim
    Hecht, Frederic
    Mansour, Gihane
    Sayah, Toni
    Tournier, Pierre Henri
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (03) : 591 - 606
  • [7] Time analyticity for the heat equation and Navier-Stokes equations
    Dong, Hongjie
    Zhang, Qi S.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (04)
  • [8] SPECTRAL APPROXIMATION OF THE PERIODIC-NONPERIODIC NAVIER-STOKES EQUATIONS
    BERNARDI, C
    MADAY, Y
    METIVET, B
    [J]. NUMERISCHE MATHEMATIK, 1987, 51 (06) : 655 - 700
  • [9] Spectral discretization of the time-dependent Navier-Stokes problem coupled with the heat equation
    Agroum, Rahma
    Bernardi, Christine
    Satouri, Jamil
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 59 - 82
  • [10] PDNNs: The parallel deep neural networks for the Navier-Stokes equations coupled with heat equation
    Zhang, Wen
    Li, Jian
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2023, 95 (04) : 666 - 681