SPECTRAL DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS COUPLED WITH THE HEAT EQUATION

被引:15
|
作者
Agroum, Rahma [1 ,2 ]
Aouadi, Saloua Mani [1 ]
Bernardi, Christine [3 ,4 ]
Satouri, Jamil [5 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Tunis 2060, Tunisia
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
[3] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[4] Univ Paris 06, F-75252 Paris 05, France
[5] Univ Tunis, IPEIT, Monfleury, Tunisia
关键词
Navier-Stokes equations; heat equation; spectral methods; NEUMANN;
D O I
10.1051/m2an/2014049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the spectral discretization of the Navier-Stokes equations coupled with the heat equation where the viscosity depends on the temperature, with boundary conditions which involve the velocity and the temperature. This problem admits a variational formulation with three independent unknowns, the velocity, the pressure and the temperature. We prove optimal error estimates and present some numerical experiments which confirm the validity of the discretization.
引用
收藏
页码:621 / 639
页数:19
相关论文
共 50 条