A bin packing problem with over-sized items

被引:10
|
作者
Xing, WX [1 ]
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
bin packing; heuristics; worst case analysis;
D O I
10.1016/S0167-6377(02)00118-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper considers a variable-sized bin packing problem with over-sized items, where some item sizes are larger than the largest size of bins, In practice, two-stage procedures are used to handle this problem. The first stage is to pack each over-sized item into the largest bins fully, and the second stage is to pack the remaining parts of the over-sized items and non-over-sized items using the methods of variable-sized bin packing. We analyze two-stage procedures in a worst case version and find that the procedures have no better worst case ratios than 2. Finally we give an on-line algorithm with an asymptotic worst case ratio no worse than (7)/(4). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 50 条
  • [41] MACROTIA - OVER-SIZED EAR - A METHOD FOR REDUCTION
    VERMEULE.VR
    [J]. LARYNGOSCOPE, 1970, 80 (07): : 1053 - &
  • [42] Fuzzy bin packing problem
    Kim, Jong-Kyou
    Lee-Kwang, H.
    W. Yoo, Seung
    [J]. 2001, Elsevier (120)
  • [43] Fuzzy bin packing problem
    Kim, JK
    Lee-Kwang, H
    Yoo, SW
    [J]. FUZZY SETS AND SYSTEMS, 2001, 120 (03) : 429 - 434
  • [44] The generalized bin packing problem
    Baldi, Mauro Maria
    Crainic, Teodor Gabriel
    Perboli, Guido
    Tadei, Roberto
    [J]. TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2012, 48 (06) : 1205 - 1220
  • [45] Bin packing problem with scenarios
    Bodis, Attila
    Balogh, Janos
    [J]. CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2019, 27 (02) : 377 - 395
  • [46] On the generalized bin packing problem
    Baldi, Mauro Maria
    Bruglieri, Maurizio
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2017, 24 (03) : 425 - 438
  • [47] ONLINE VARIABLE-SIZED BIN PACKING
    KINNERSLEY, NG
    LANGSTON, MA
    [J]. DISCRETE APPLIED MATHEMATICS, 1989, 22 (02) : 143 - 148
  • [48] Dynamic bin packing with unit fraction items revisited
    Han, Xin
    Peng, Chao
    Ye, Deshi
    Zhang, Dahai
    Lan, Yan
    [J]. INFORMATION PROCESSING LETTERS, 2010, 110 (23) : 1049 - 1054
  • [49] MULTIDIMENSIONAL OPTIMAL BIN PACKING WITH ITEMS OF RANDOM SIZE
    RHEE, WT
    TALAGRAND, M
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1991, 16 (03) : 490 - 503
  • [50] A NOTE ON OPTIMAL BIN PACKING AND OPTIMAL BIN COVERING WITH ITEMS OF RANDOM SIZE
    RHEE, WT
    [J]. SIAM JOURNAL ON COMPUTING, 1990, 19 (04) : 705 - 710