Performance monitoring of MIMO control system using Kullback-Leibler divergence

被引:9
|
作者
Wu, Ping [1 ]
机构
[1] Zhejiang Sci Tech Univ, Fac Mech Engn & Automat, Hangzhou 310018, Zhejiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
multi-input-multi-output control system; control loop performance monitoring; Kullback-Leibler divergence; non-Gaussian; FAULT-DETECTION; DIAGNOSIS;
D O I
10.1002/cjce.23090
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, a novel control performance monitoring method using Kullback-Leibler divergence is proposed for a multi-input-multi-output (MIMO) control system. Kullback-Leibler divergence is employed to quantify the dissimilarity in the closed loop output data distributions between the monitored period and the reference period. Furthermore, a Kullback-Leibler divergence based performance index is developed to detect the control performance change. Compared with conventional covariance based control performance indices, the proposed performance index can not only cope with the closed loop output data distribution under non-Gaussian noise, but also shows greater sensitivity to the control performance change. Simulation results demonstrate the effectiveness of the proposed Kullback-Leibler divergence based control performance index.
引用
下载
收藏
页码:1559 / 1565
页数:7
相关论文
共 50 条
  • [21] Fault tolerant learning using Kullback-Leibler divergence
    Sum, John
    Leung, Chi-sing
    Hsu, Lipin
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 1193 - +
  • [22] Distributions of the Kullback-Leibler divergence with applications
    Belov, Dmitry I.
    Armstrong, Ronald D.
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2011, 64 (02): : 291 - 309
  • [23] Model Fusion with Kullback-Leibler Divergence
    Claici, Sebastian
    Yurochkin, Mikhail
    Ghosh, Soumya
    Solomon, Justin
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [24] GBAS Ionospheric Anomaly Monitoring Strategy Using Kullback-Leibler Divergence Metric
    Cho, Jeongho
    Yun, Youngsun
    Heo, Moon-Beom
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2015, 51 (01) : 565 - 574
  • [25] Anomaly Detection Using the Kullback-Leibler Divergence Metric
    Afgani, Mostafa
    Sinanovic, Sinan
    Haas, Harald
    ISABEL: 2008 FIRST INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMMUNICATION TECHNOLOGIES, 2008, : 197 - 201
  • [26] Android Malware Detection Using Kullback-Leibler Divergence
    Cooper, Vanessa N.
    Haddad, Hisham M.
    Shahriar, Hossain
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2014, 3 (02): : 17 - 24
  • [27] An Asymptotic Test for Bimodality Using The Kullback-Leibler Divergence
    Contreras-Reyes, Javier E.
    SYMMETRY-BASEL, 2020, 12 (06):
  • [28] Optimal robust estimates using the Kullback-Leibler divergence
    Yohai, Victor J.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1811 - 1816
  • [29] Estimating Kullback-Leibler Divergence Using Kernel Machines
    Ahuja, Kartik
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 690 - 696
  • [30] Human promoter recognition using kullback-leibler divergence
    Zeng, Ja
    Cao, Xiao-Qin
    Yan, Hong
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3319 - 3325