Construction of fast and robust N-FINDR algorithm

被引:0
|
作者
Wang, Liguo [1 ]
Jia, Xiuping
Zhang, Ye
机构
[1] Harbin Engn Univ, Sch Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Dept Informat Engn, Harbin 150001, Peoples R China
[3] Univ New S Wales, Univ Coll, Sch Elect Engn, Australian Def Force Acad, Campbell, ACT 2600, Australia
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
N-FINDR has been a popular algorithm of endmember (EM) extraction method for its fully automation and relative efficiency. Unfortunately, innumerable volume calculation leads to a low speed of the algorithm and so becomes a limitation to its applications. Additionally, the algorithm is vulnerable to outliers that widely exist in hyperspectral data. In this paper, distance measure is adopted in place of volume one to speed up the algorithm and outliers are effectively controlled to endow the algorithm with robustness. Experiments show the improved algorithm is very fast and robust.
引用
收藏
页码:791 / 796
页数:6
相关论文
共 50 条
  • [41] 纯净像元指数改进的N-FINDR高光谱端元提取算法
    杨鹏飞
    廖秀英
    徐启恒
    程辉
    测绘通报, 2018, (02) : 89 - 93
  • [42] 两种基于异常权重的N-FINDR端元提取算法
    王杰
    李卫朋
    西华师范大学学报(自然科学版), 2016, 37 (04) : 439 - 443
  • [43] SYNCHRONOUS, ASYNCHRONOUS AND GROUPING ASYNCHRONOUS PARALLEL IMPLEMENTATION FOR N-FINDR ALGORITHMS IN HYPERSPECTRAL REMOTE SENSING IMAGE
    Luo, Wenfei
    Zhang, Hao
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1755 - 1758
  • [44] 一种改进的N-FINDR高光谱端元提取算法
    赵春晖
    齐滨
    王玉磊
    电子与信息学报, 2012, 34 (02) : 499 - 503
  • [45] 基于改进N-FINDR算法的华北平原冬小麦面积提取
    郝虑远
    孙睿
    谢东辉
    唐侥
    汪艳
    农业工程学报, 2013, 29 (15) : 153 - 161
  • [46] FPGA Implementation of Endmember Extraction Algorithms from Hyperspectral Imagery: Pixel Purity Index versus N-FINDR
    Gonzalez, Carlos
    Mozos, Daniel
    Resano, Javier
    Plaza, Antonio
    HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING, 2011, 8183
  • [47] 以光谱信息熵改进的N-FINDR高光谱端元提取算法
    杨可明
    魏华锋
    刘飞
    史钢强
    孙阳阳
    地球信息科学学报, 2015, (08) : 979 - 985
  • [48] Segmentation of Watery Low Land Area using Hyperspectral Imaging Technique: A Comparative Study with PPI, N-FINDR, ATGP, and FIPPI
    Bej, Gopinath
    Dey, Tamal
    Pal, Abhra
    Sutradhar, Tapas
    Akuli, Amitava
    Ghosh, Alokesh
    2023 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE FOR GEOANALYTICS AND REMOTE SENSING, MIGARS, 2023, : 88 - 91
  • [49] A Distributed N-FINDR Cloud Computing-Based Solution for Endmembers Extraction on Large-Scale Hyperspectral Remote Sensing Data
    Ayma Quirita, Victor Andres
    Ostwald Pedro da Costa, Gilson Alexandre
    Beltran, Cesar
    REMOTE SENSING, 2022, 14 (09)
  • [50] FRAC: A fast and robust algorithm for classification
    Fattahi, E.
    Sadeghi, N.
    Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2013, 2013, : 1047 - 1051