We prove an a-posteriori error estimate for an hp-adaptive discontinuous Galerkin method for the numerical solution of elliptic eigenvalue problems with discontinuous coefficients on anisotropically refined rectangular elements. The estimate yields a global upper bound of the errors for both the eigenvalue and the eigenfunction and lower bound of the error for the eigenfunction only. The anisotropy of the underlying meshes is incorporated in the upper bound through an alignment measure. We present a series of numerical experiments to test the flexibility and robustness of this approach within a fully automated hp-adaptive refinement algorithm.
机构:
Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USAColorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Estep, D.
Malqvist, A.
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, SwedenColorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Malqvist, A.
Tavener, S.
论文数: 0引用数: 0
h-index: 0
机构:
Colorado State Univ, Dept Math, Ft Collins, CO 80523 USAColorado State Univ, Dept Math, Ft Collins, CO 80523 USA