An a-posteriori error estimate for hp-adaptive DG methods for elliptic eigenvalue problems on anisotropically refined meshes

被引:0
|
作者
Giani, Stefano [1 ]
Hall, Edward [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
Discontinuous Galerkin methods; Elliptic eigenvalue problems; A posteriori error estimation; hp-adaptivity; Anisotropic mesh refinement; FINITE-ELEMENT METHODS; DISCONTINUOUS GALERKIN METHODS; ADVECTION-DIFFUSION EQUATIONS; SPECTRAL APPROXIMATION; CONVERGENCE;
D O I
10.1007/s00607-012-0261-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove an a-posteriori error estimate for an hp-adaptive discontinuous Galerkin method for the numerical solution of elliptic eigenvalue problems with discontinuous coefficients on anisotropically refined rectangular elements. The estimate yields a global upper bound of the errors for both the eigenvalue and the eigenfunction and lower bound of the error for the eigenfunction only. The anisotropy of the underlying meshes is incorporated in the upper bound through an alignment measure. We present a series of numerical experiments to test the flexibility and robustness of this approach within a fully automated hp-adaptive refinement algorithm.
引用
收藏
页码:S319 / S341
页数:23
相关论文
共 26 条