LEFT-ORDERABLE COMPUTABLE GROUPS

被引:5
|
作者
Harrison-Trainor, Matthew [1 ]
机构
[1] Univ Calif Berkeley, Grp Log & Methodol Sci, Berkeley, CA 94720 USA
基金
加拿大自然科学与工程研究理事会;
关键词
computable structure theory; computable algebra; ordered groups;
D O I
10.1017/jsl.2017.19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Downey and Kurtz asked whether every orderable computable group is classically isomorphic to a group with a computable ordering. By an order on a group, one might mean either a left-order or a bi-order. We answer their question for left-orderable groups by showing that there is a computable left-orderable group which is not classically isomorphic to a computable group with a computable left-order. The case of bi-orderable groups is left open.
引用
收藏
页码:237 / 255
页数:19
相关论文
共 50 条
  • [21] Isotropic nonarchimedean S-arithmetic groups are not left orderable
    Lifschitz, L
    Morris, DW
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (06) : 417 - 420
  • [22] On Borel orderable groups
    Christensen, JRP
    Kanovei, V
    Reeken, M
    TOPOLOGY AND ITS APPLICATIONS, 2001, 109 (03) : 285 - 299
  • [23] COMPLETELY ORDERABLE GROUPS
    TEREKHOV, AA
    DOKLADY AKADEMII NAUK SSSR, 1959, 129 (01): : 34 - 36
  • [24] On centrally orderable groups
    Bludov, VV
    Glass, AMW
    Rhelutulla, AH
    JOURNAL OF ALGEBRA, 2005, 291 (01) : 129 - 143
  • [25] LATTICE ORDERABLE GROUPS
    TODORINOV, SA
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1982, 35 (09): : 1189 - 1191
  • [26] COMMUTATORS IN ORDERABLE GROUPS
    FOX, CD
    COMMUNICATIONS IN ALGEBRA, 1975, 3 (03) : 213 - 217
  • [27] On orderable poly engel groups
    Kim, Yangkok
    Rhemtulla, Akbar
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (08) : 3023 - 3027
  • [28] AMENABILITY AND RIGHT ORDERABLE GROUPS
    KROPHOLLER, PH
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 : 347 - 352
  • [29] An Engel condition for orderable groups
    Shumyatsky, Pavel
    Tortora, Antonio
    Tota, Maria
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (03): : 461 - 468
  • [30] Orderable groups and semigroup compactifications
    Megrelishvili, Michael
    MONATSHEFTE FUR MATHEMATIK, 2023, 200 (04): : 903 - 932