Time Domain Interpolation Algorithm for Innovations of Discrete Time Multivariate Stationary Processes

被引:3
|
作者
Soltani, A. R. [1 ,2 ]
Mohammadpour, M. [3 ]
机构
[1] Kuwait Univ, Fac Sci, Dept Stat & Operat Res, Safat 13060, Kuwait
[2] Shiraz Univ, Coll Sci, Dept Stat, Shiraz, Iran
[3] Univ Mazandaran, Fac Basic Sci, Dept Stat, Babol Sar, Iran
关键词
Innovation; Interpolation; Multivariate stationary sequences; von Neumann's alternating projection formula; STOCHASTIC PROCESSES; PREDICTION THEORY;
D O I
10.1080/07362990802678911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Time domain calculus of Wiener and Masani together with the von Neumann's alternating projection formula are employed to obtain a time domain algorithm for the best linear interpolator of unrecorded innovations in discrete time multivariate second order stationary processes. From the interpolated innovations of a multivariate discrete-time ARMA process we indicate how to compute interpolated values of the process itself.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 50 条
  • [31] NEW RESULTS ON THE INTERPOLATION PROBLEM FOR CONTINUOUS-TIME STATIONARY INCREMENTS PROCESSES
    PAVON, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (01) : 133 - 142
  • [32] Persistence of non-Markovian Gaussian stationary processes in discrete time
    Nyberg, Markus
    Lizana, Ludvig
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [33] QUASI-STATIONARY DISTRIBUTIONS FOR PERTURBED DISCRETE TIME REGENERATIVE PROCESSES
    Petersson, Mikael
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 89 : 140 - 155
  • [34] A frequency domain bootstrap for general multivariate stationary processes
    Meyer, Marco
    Paparoditis, Efstathios
    BERNOULLI, 2023, 29 (03) : 2367 - 2391
  • [35] A Polynomial Time Algorithm for Multivariate Interpolation in Arbitrary Dimension via the Delaunay Triangulation
    Chang, Tyler H.
    Watson, Layne T.
    Lux, Thomas C. H.
    Li, Bo
    Xu, Li
    Butt, Ali R.
    Cameron, Kirk W.
    Hong, Yili
    ACMSE '18: PROCEEDINGS OF THE ACMSE 2018 CONFERENCE, 2018,
  • [36] Regularization for stationary multivariate time series
    Sun, Yan
    Lin, Xiaodong
    QUANTITATIVE FINANCE, 2012, 12 (04) : 573 - 586
  • [37] ADAPTIVE INTERPOLATION OF DISCRETE-TIME SIGNALS THAT CAN BE MODELED AS AUTOREGRESSIVE PROCESSES
    JANSSEN, AJEM
    VELDHUIS, RNJ
    VRIES, LB
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (02): : 317 - 330
  • [38] Interpolation of Discrete-Time Series
    Guo, Yanlin
    Wang, Lijuan
    Kareem, Ahsan
    JOURNAL OF ENGINEERING MECHANICS, 2020, 146 (06)
  • [39] Optimal Control of Discrete-Time Multivariate Point Processes with Finite-Time Steady State
    Julius, A. Agung
    Wen, Yunshi
    Yan, Ruixuan
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 8545 - 8552
  • [40] Discrete time representation of stationary and non-stationary continuous time systems
    Chambers, MJ
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1999, 23 (04): : 619 - 639