Multimodal Few-Shot Learning for Gait Recognition

被引:10
|
作者
Moon, Jucheol [1 ]
Nhat Anh Le [1 ]
Minaya, Nelson Hebert [1 ]
Choi, Sang-Il [2 ]
机构
[1] Calif State Univ Long Beach, Dept Comp Engn & Comp Sci, Long Beach, CA 90840 USA
[2] Dankook Univ, Dept Comp Sci & Engn, Yongin 16890, Gyeonggi Do, South Korea
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 21期
基金
新加坡国家研究基金会;
关键词
gait analysis; open set recognition; few-shot learning; multi-modality; wearable sensors; NEURAL-NETWORKS; CLASSIFICATION; PERCEPTION; INVARIANT;
D O I
10.3390/app10217619
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A person's gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human gait can be captured by wearable devices, a few studies have led to the proposal of methods to process gait information for identification purposes. Despite recent advances in gait recognition, an open set gait recognition problem presents challenges to current approaches. To address the open set gait recognition problem, a system should be able to deal with unseen subjects who have not included in the training dataset. In this paper, we propose a system that learns a mapping from a multimodal time series collected using insole to a latent (embedding vector) space to address the open set gait recognition problem. The distance between two embedding vectors in the latent space corresponds to the similarity between two multimodal time series. Using the characteristics of the human gait pattern, multimodal time series are sliced into unit steps. The system maps unit steps to embedding vectors using an ensemble consisting of a convolutional neural network and a recurrent neural network. To recognize each individual, the system learns a decision function using a one-class support vector machine from a few embedding vectors of the person in the latent space, then the system determines whether an unknown unit step is recognized as belonging to a known individual. Our experiments demonstrate that the proposed framework recognizes individuals with high accuracy regardless they have been registered or not. If we could have an environment in which all people would be wearing the insole, the framework would be used for user verification widely.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] A Few-shot Learning Approach for Historical Ciphered Manuscript Recognition
    Souibgui, Mohamed Ali
    Fornes, Alicia
    Kessentini, Yousri
    Tudor, Crina
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5413 - 5420
  • [42] Few-shot learning-based human activity recognition
    Feng, Siwei
    Duarte, Marco F.
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 138
  • [43] Defensive Few-Shot Learning
    Li, Wenbin
    Wang, Lei
    Zhang, Xingxing
    Qi, Lei
    Huo, Jing
    Gao, Yang
    Luo, Jiebo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5649 - 5667
  • [44] Federated Few-shot Learning
    Wang, Song
    Fu, Xingbo
    Ding, Kaize
    Chen, Chen
    Chen, Huiyuan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2374 - 2385
  • [45] FedAffect: Few-shot federated learning for facial expression recognition
    Shome, Debaditya
    Kar, T.
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 4151 - 4158
  • [46] Continuous Gesture Sequences Recognition Based on Few-Shot Learning
    Liu, Zhe
    Pan, Cao
    Wang, Hongyuan
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2022, 2022
  • [47] Fractal Few-Shot Learning
    Zhou, Fobao
    Huang, Wenkai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [48] Interventional Few-Shot Learning
    Yue, Zhongqi
    Zhang, Hanwang
    Sun, Qianru
    Hua, Xian-Sheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [49] Few-Shot Lifelong Learning
    Mazumder, Pratik
    Singh, Pravendra
    Rai, Piyush
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2337 - 2345
  • [50] Few-shot Logo Recognition in the Wild
    Ermakov, Mikhail
    Makarov, Ilya
    2022 IEEE 22ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 8TH IEEE INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCE AND ROBOTICS (CINTI-MACRO), 2022, : 393 - 397