Nonparametric density estimation in compound Poisson processes using convolution power estimators

被引:10
|
作者
Comte, Fabienne [1 ]
Duval, Celine [1 ]
Genon-Catalot, Valentine [1 ]
机构
[1] Univ Paris 05, Sorbonne Paris Cite, UMR CNRS 8145, MAP5, Paris, France
关键词
Convolution; Compound Poisson process; Inverse problem; Nonparametric estimation; Parameter estimation; JUMP LEVY PROCESSES; HIGH-FREQUENCY DATA; INFERENCE; SUMS;
D O I
10.1007/s00184-013-0475-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a compound Poisson process which is discretely observed with sampling interval until exactly nonzero increments are obtained. The jump density and the intensity of the Poisson process are unknown. In this paper, we build and study parametric estimators of appropriate functions of the intensity, and an adaptive nonparametric estimator of the jump size density. The latter estimation method relies on nonparametric estimators of th convolution powers density. The -risk of the adaptive estimator achieves the optimal rate in the minimax sense over Sobolev balls. Numerical simulation results on various jump densities enlight the good performances of the proposed estimator.
引用
收藏
页码:163 / 183
页数:21
相关论文
共 50 条