Three-dimensional modeling of planar solid oxide fuel cells and the rib design optimization

被引:62
|
作者
Liu, Shixue [1 ,2 ,3 ,4 ]
Kong, Wei [2 ]
Lin, Zijing [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[4] Chinese Acad Sci, Key Lab Biofuels, Qingdao 266101, Peoples R China
基金
美国国家科学基金会;
关键词
Solid oxide fuel cell; Three dimensional; Interconnect rib; Contact resistance; Design optimization; INTERMEDIATE TEMPERATURE; SOFC STACK; DUSTY-GAS; ANODE; PERFORMANCE; ELECTROCHEMISTRY; POLARIZATION;
D O I
10.1016/j.jpowsour.2009.06.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three-dimensional (3D) multi-physics models of co-, counter- and cross-flow planar solid oxide fuel cell (SOFC) stack units are described. The models consider electronic conduction in the electrodes, ionic conduction in the electrolyte, mass transport in the porous electrodes and electrochemical reactions on the three phase boundaries. Based on the analysis of the ionic conducting equation for the thin electrolyte layer, a mathematically equivalent method is proposed to scale the electrolyte thickness with the corresponding change in the ionic conductivity to moderate the thin film effect in the meshing step and decrease the total number of degrees of freedom in the 3D numerical models. Examples of applications are given with typical physical fields illustrated and the characteristic features discussed for co-, counter and cross-flow designs. The 3D models are also used to optimize the rib widths in SOFC stacks as a function of interconnect-electrode contact resistance. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:854 / 863
页数:10
相关论文
共 50 条
  • [41] A hierarchical modeling approach to the simulation and control of planar solid oxide fuel cells
    Sorrentino, Marco
    Pianese, Cesare
    Guezennec, Yann G.
    [J]. JOURNAL OF POWER SOURCES, 2008, 180 (01) : 380 - 392
  • [42] TRANSIENT MODELING OF DIRECT INTERNAL REFORMING PLANAR SOLID OXIDE FUEL CELLS
    Colpan, C. Ozgur
    Dincer, Ibrahim
    Hamdullahpur, Feridun
    [J]. HT2008: PROCEEDING OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, VOL 3, 2009, : 605 - 612
  • [43] A review on macro-level modeling of planar solid oxide fuel cells
    Colpan, C. Ozgur
    Dincer, Ibrahim
    Hamdullahpur, Feridun
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2008, 32 (04) : 336 - 355
  • [44] Electrochemical Simulation of Planar Solid Oxide Fuel Cells with Detailed Microstructural Modeling
    Bertei, A.
    Mertens, J.
    Nicolella, C.
    [J]. ELECTROCHIMICA ACTA, 2014, 146 : 151 - 163
  • [45] Three Dimensional Simulation of a Counter-flow Planar Solid Oxide Fuel Cell
    Barzi, Y. Mollayi
    Raoufi, A.
    Rasi, N. Manafi
    Davari, S.
    [J]. SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 1021 - 1033
  • [46] Three dimensional analysis of planar solid oxide fuel cell stack considering radiation
    Tanaka, T.
    Inui, Y.
    Urata, A.
    Kanno, T.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (05) : 1491 - 1498
  • [47] Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell
    Wang, Yang
    Du, Yingmeng
    Ni, Meng
    Zhan, Ruobing
    Du, Qing
    Jiao, Kui
    [J]. APPLIED THERMAL ENGINEERING, 2020, 172
  • [48] Detailed modeling of an anode-supported solid oxide fuel cell using a fully three-dimensional approach
    Ho, T. X.
    Kosinski, P.
    Hoffmann, A. C.
    Vik, A.
    [J]. SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 1231 - 1240
  • [49] Modeling of solid oxide fuel cells
    Meng Ni
    [J]. Science Bulletin, 2016, 61 (17) : 1311 - 1312
  • [50] Modeling of solid oxide fuel cells
    Ni, Meng
    [J]. SCIENCE BULLETIN, 2016, 61 (17) : 1311 - 1312