Characterizing topography of EDM generated surface by time series and autocorrelation function

被引:15
|
作者
Aich, Ushasta [1 ]
Banerjee, Simul [1 ]
机构
[1] Jadavpur Univ, Mech Engn Dept, Kolkata 700032, India
关键词
Electrical discharge machining (EDM); Autocorrelation function (ACF); Periodicity to randomness ratio (PR ratio); LINEAR PREDICTION;
D O I
10.1016/j.triboint.2017.02.016
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Characterizing topography of machined surface is a way of getting insight into the machining phenomena. Here, a statistical procedure is proposed for extracting the topographical features of electric discharge machined (EDM) surface. Computed autocorrelation functions (ACF) of roughness profiles (considering as time series) exhibit possible random and periodic features buried on the machined surface. Through the decomposition of ACF curves and using backward linear prediction method, existing random and periodic patterns are separated. Very small values of a non-dimensional index - PR ratio indicate the presence of significant random variations in the machined surface. Spatial variations of characteristic lengths within a treatment are found as the most contributive part in overall variation and assert stochastic nature of surface development.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [21] The discrete Chebyshev algorithm for nonparametric estimation of autocorrelation function of electrochemical random time series
    A. L. Klyuev
    A. D. Davydov
    B. M. Grafov
    [J]. Journal of Solid State Electrochemistry, 2019, 23 : 2325 - 2330
  • [22] S-ACF: a selective estimator for the autocorrelation function of irregularly sampled time series
    Kreutzer, Lars T.
    Gillen, Edward
    Briegal, Joshua T.
    Queloz, Didier
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (04) : 5049 - 5061
  • [23] Unraveling Time Series Dynamics: Evaluating Partial Autocorrelation Function Distribution and Its Implications
    Hassani, Hossein
    Marvian, Leila
    Yarmohammadi, Masoud
    Yeganegi, Mohammad Reza
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (04)
  • [24] On a method for detecting periods and repeating patterns in time series data with autocorrelation and function approximation
    Breitenbach, Tim
    Wilkusz, Bartosz
    Rasbach, Lauritz
    Jahnke, Patrick
    [J]. PATTERN RECOGNITION, 2023, 138
  • [25] The discrete Chebyshev algorithm for nonparametric estimation of autocorrelation function of electrochemical random time series
    Klyuev, A. L.
    Davydov, A. D.
    Grafov, B. M.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (08) : 2325 - 2330
  • [26] Sensitivity to autocorrelation in judgmental time series forecasting
    Reimers, Stian
    Harvey, Nigel
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (04) : 1196 - 1214
  • [27] Partial Autocorrelation Diagnostics for Count Time Series
    Weiss, Christian H.
    Aleksandrov, Boris
    Faymonville, Maxime
    Jentsch, Carsten
    [J]. ENTROPY, 2023, 25 (01)
  • [28] A Series Expansion for the Time Autocorrelation of Dynamical Variables
    Alberto Mario Maiocchi
    Andrea Carati
    Antonio Giorgilli
    [J]. Journal of Statistical Physics, 2012, 148 : 1054 - 1071
  • [29] A Series Expansion for the Time Autocorrelation of Dynamical Variables
    Maiocchi, Alberto Mario
    Carati, Andrea
    Giorgilli, Antonio
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (06) : 1054 - 1071
  • [30] PARAMETERS FOR CHARACTERIZING THE SURFACE TOPOGRAPHY OF ENGINEERING COMPONENTS.
    Sherrington, I.
    Smith, E.H.
    [J]. Proceedings of the Institution of Mechanical Engineers. Part C. Mechanical engineering science, 1987, 201 (04): : 297 - 306