Bone complications in multiple myeloma

被引:11
|
作者
Berenson, James R.
Rajdev, Lakshmi
Broder, Michael
机构
[1] Inst Myeloma & Bone Canc Res, W Hollywood, CA USA
[2] Montefiore Med Ctr, Albert Einstein Coll Med, Bronx, NY 10467 USA
关键词
bone; sequelae; bisphosphonates; multiple myeloma;
D O I
10.4161/cbt.5.9.3307
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Multiple myeloma is the malignant proliferation of plasma cells involving more than 10% of the bone marrow. The bone complications associated with multiple myeloma include bone pain, pathologic fractures, hypercalcemia of malignancy and cord compressions. The principal pathophysiology of bone disease in multiple myeloma is a shift in the balance of bone remodeling toward bone resorption. In recent years, bisphosphonates have become an important treatment for the bone complications of multiple myeloma. Potent inhibitors of osteoclast activity, bisphosphonates interfere with biochemical pathways and induce osteoclast apoptosis. Bisphosphonates also antagonize osteoclastogenesis and promote differentiation of osteoblasts, as well as inhibiting other aspects of osteoclast homeostasis and metabolism. Several studies have evaluated treatment with bisphosphonates in patients with multiple myeloma, and have demonstrated the efficacy of clodronate (Bonefos(R); Anthra Pharmaceuticals; Princeton, NJ; www.bonefos.com), pamidronate (Aredia(R); Novartis Pharmaceuticals Corp; East Hanover, NJ; www.pamidronate.com) and zoledronic acid (Zometa(R); Novartis Pharmaceuticals Corp; East Hanover, NJ; www.us.zometa.com) in reduction of pain, reduction of SREs and survival. Moreover, recent data suggest direct and indirect antimyeloma activity of pamidronate and zoledronic acid.
引用
收藏
页码:1082 / 1085
页数:4
相关论文
共 50 条
  • [41] BONE DENSITY PATTERN IN MULTIPLE MYELOMA
    Fazaa, A.
    Miladi, S.
    Souabni, L.
    Rouatbi, F.
    Chekili, S.
    Kassab, S.
    Ben Abdelghani, K.
    Laatar, A.
    [J]. OSTEOPOROSIS INTERNATIONAL, 2021, 32 (SUPPL 1) : S400 - S400
  • [42] MULTIPLE MYELOMA WITH NEW BONE FORMATION
    KRAININ, P
    DANGIO, CJ
    SMELIN, A
    [J]. ARCHIVES OF INTERNAL MEDICINE, 1949, 84 (06) : 976 - 982
  • [43] ASSESSMENT OF BONE METABOLISM IN MULTIPLE MYELOMA
    Onishi, C.
    Yano, S.
    Okada, T.
    Adachi, K.
    Kumanomido, S.
    Ikejiri, F.
    Kawakami, K.
    Inoue, M.
    Miyake, T.
    Takahashi, T.
    Tanaka, J.
    Suzumiya, J.
    [J]. HAEMATOLOGICA, 2012, 97 : 625 - 626
  • [44] Pathophysiology of multiple myeloma bone disease
    Lentzsch, Suzanne
    Ehrlich, Lorl A.
    Roodman, G. David
    [J]. HEMATOLOGY-ONCOLOGY CLINICS OF NORTH AMERICA, 2007, 21 (06) : 1035 - +
  • [45] Amyloid in bone marrow of multiple myeloma
    Petruzziello, F.
    Zeppa, P.
    Cozzolino
    Caleo, A.
    Catalano, L.
    Rotoli, B.
    [J]. HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2007, 92 : 147 - 147
  • [46] Epigenetics of Multiple Myeloma Bone Disease
    Sree H Pulugulla
    Juraj Adamik
    [J]. Current Molecular Biology Reports, 2019, 5 (2) : 86 - 96
  • [47] Bone marrow angiogenesis in multiple myeloma
    Vacca, A
    Ribatti, D
    [J]. LEUKEMIA, 2006, 20 (02) : 193 - 199
  • [48] Immunomodulation of Multiple Myeloma Bone Disease
    Grano M.
    Brunetti G.
    Colucci S.
    [J]. Clinical Reviews in Bone and Mineral Metabolism, 2009, 7 (4): : 293 - 300
  • [49] Mechanisms of bone destruction in multiple myeloma
    Terpos, E.
    Christoulas, D.
    Gavriatopoulou, M.
    Dimopoulos, M. A.
    [J]. EUROPEAN JOURNAL OF CANCER CARE, 2017, 26 (06)
  • [50] PATHOPHYSIOLOGY OF BONE DISEASE IN MULTIPLE MYELOMA
    Zannetino, A.
    [J]. OSTEOPOROSIS INTERNATIONAL, 2011, 22 : S508 - S508