Stochastic Extraction of Elongated Curvilinear Structures in Mammographic Images

被引:0
|
作者
Krylov, Vladimir A. [1 ]
Taylor, Stuart [2 ]
Nelson, James D. B. [1 ]
机构
[1] UCL, Dept Stat Sci, Mortimer St, London WC1E 6BT, England
[2] UCL, Ctr Med Imaging, London WC1E 6BT, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Curvilinear structure; mammogram; localized Radon transform; Markov chain Monte Carlo; LINEAR STRUCTURES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The extraction of elongated curvilinear structure in mammographic images is an important objective for the automated detection of breast cancers. We develop an approach which relies on a fixed-grid, localized Radon transform for line segment extraction and a Markov random field model to incorporate local interactions and refine the line structure. The energy of the resulting distribution is minimized stochastically via a Markov chain Monte Carlo iterative procedure. Experimental results demonstrate that the method can accurately extract blurred and low-contrast elongated continuous curvilinear structures, including those radiating from cancerous masses.
引用
收藏
页码:475 / 484
页数:10
相关论文
共 50 条
  • [31] Reconnection of Interrupted Curvilinear Structures via Cortically Inspired Completion for Ophthalmologic Images
    Zhang, Jiong
    Bekkers, Erik
    Chen, Da
    Berendschot, Tos T. J. M.
    Schouten, Jan
    Pluim, Josien P. W.
    Shi, Yonggang
    Dashtbozorg, Behdad
    Romeny, Bart M. ter Haar
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (05) : 1151 - 1165
  • [32] Improved ROEWA SAR Image Edge Detector Based on Curvilinear Structures Extraction
    Luo, Yuxiao
    An, Daoxiang
    Wang, Wu
    Huang, Xiaotao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (04) : 631 - 635
  • [33] Feature extraction using Convolutional Neural Network for classifying breast density in mammographic images
    Thomaz, Ricardo L.
    Cerneiro, Pedro C.
    Patrocinio, Ana C.
    MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [34] Tracing of curvilinear structures in 3D images with single scale diameter measurement
    Streekstra, GJ
    Smeulders, AWM
    van den Boomgaard, R
    SCALE-SPACE THEORIES IN COMPUTER VISION, 1999, 1682 : 501 - 506
  • [35] Information extraction with HMM structures learned by stochastic optimization
    Freitag, D
    McCallum, A
    SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), 2000, : 584 - 589
  • [36] An efficient algorithm for extraction of anatomical structures in retinal images
    Chanwimaluang, T
    Fan, GL
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS, 2003, : 1093 - 1096
  • [37] Extraction of anatomic structures from medical volumetric images
    Cho, Wan-Hyun
    Kim, Sun-Worl
    Lee, Myung-Eun
    Park, Soon-Young
    ADVANCES IN MULTIMEDIA MODELING, PT 1, 2007, 4351 : 86 - 95
  • [38] Detection and matching of curvilinear structures
    Lemaitre, C.
    Perdoch, M.
    Rahmoune, A.
    Matas, J.
    Miteran, J.
    PATTERN RECOGNITION, 2011, 44 (07) : 1514 - 1527
  • [39] Multiscale Bi-Gaussian Filter for Adjacent Curvilinear Structures Detection With Application to Vasculature Images
    Xiao, Changyan
    Staring, Marius
    Wang, Yaonan
    Shamonin, Denis P.
    Stoel, Berend C.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) : 174 - 188
  • [40] FINDING CURVILINEAR FEATURES IN SPECKLED IMAGES
    SAMADANI, R
    VESECKY, JF
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1990, 28 (04): : 669 - 673