New characterizations of hyperbolic cylinders in semi-Riemannian space forms

被引:1
|
作者
de Lima, Henrique F. [1 ]
dos Santos, Fabio R. [1 ]
Velasquez, Marco Antonio L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
Semi-Riemannian space forms; Parallel normalized mean curvature vector; Complete linear Weingarten submanifold; Isoparametric submanifolds; Hyperbolic cylinders; CONSTANT MEAN-CURVATURE; SITTER SPACE; MAXIMAL SPACE; HYPERSURFACES; SUBMANIFOLDS; VECTOR; SURFACES;
D O I
10.1016/j.jmaa.2015.09.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Through the study of the so-called linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector in a semi-Riemannian space form Q(p)(n+p)(c) of index p and constant sectional curvature c is an element of{-1,0,1}, our aim in this paper is establish new characterizations for the hyperbolic cylinders of Q(p)(n+p)(c). Our approach is based on the use of a Simons type formula related to an appropriated Cheng-Yau modified operator jointly with the application of suitable generalized maximum principles. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:765 / 779
页数:15
相关论文
共 50 条
  • [41] Classification via semi-Riemannian spaces
    Zhao, Deli
    Lin, Zhouchen
    Tang, Xiaoou
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 39 - +
  • [42] Geodesic connectedness of semi-Riemannian manifolds
    Sánchez, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (05) : 3085 - 3102
  • [43] GEODESIC REFLECTIONS IN SEMI-RIEMANNIAN GEOMETRY
    GARCIARIO, E
    VAZQUEZABAL, ME
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1993, 43 (04) : 583 - 597
  • [44] A HARMONIC ENDOMORPHISM IN A SEMI-RIEMANNIAN CONTEXT
    Bejan, Cornelia-Livia
    Eken, Semsi
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2016, : 172 - 181
  • [45] Conformally symmetric semi-Riemannian manifolds
    Suh, YJ
    Kwon, JH
    Yang, HY
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (05) : 875 - 901
  • [46] DIVERGENCE THEOREMS IN SEMI-RIEMANNIAN GEOMETRY
    UNAL, B
    ACTA APPLICANDAE MATHEMATICAE, 1995, 40 (02) : 173 - 178
  • [47] SLANT SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS
    Aydin, Gulsah
    Coken, A. Ceylan
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (10)
  • [48] SEMI-RIEMANNIAN GEOMETRY WITH NONHOLONOMIC CONSTRAINTS
    Korolko, Anna
    Markina, Irina
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (04): : 1581 - 1616
  • [49] Maslov index in semi-Riemannian submersions
    Caponio, Erasmo
    Angel Javaloyes, Miguel
    Piccione, Paolo
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (01) : 57 - 75
  • [50] Maslov index in semi-Riemannian submersions
    Erasmo Caponio
    Miguel Angel Javaloyes
    Paolo Piccione
    Annals of Global Analysis and Geometry, 2010, 38 : 57 - 75