Lossless Compression of Ultraspectral Sounder Data Using Linear Prediction With Constant Coefficients

被引:7
|
作者
Mielikainen, Jarno [1 ]
Toivanen, Pekka [1 ]
机构
[1] Univ Kuopio, Dept Comp Sci, FIN-70211 Kuopio, Finland
基金
芬兰科学院;
关键词
Lossless compression; ultraspectral sounder data;
D O I
10.1109/LGRS.2009.2020092
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents a lossless compression method for ultraspectral sounder data. The method utilizes spectral linear prediction that exploits statistical similarities between different granules. The linear prediction with optimal granule ordering (LP-OGO) method computes linear prediction coefficients using a different granule. That approach requires one to tentatively compress all the other granules one at a time for prediction coefficient computation. The optimal ordering problem of the granules is solved by using Edmonds' algorithm. Our linear prediction with constant coefficients (LP-CC) compression method requires neither tentative compression of all the granules nor optimal ordering of the granules. We randomly select a predetermined number of granules and use that set of granules for computing constant linear prediction coefficients. Those linear prediction coefficients are used in the compression of all the other granules. The results show that the proposed method gives comparable results to the state-of-the-art method, i.e., LP-OGO, on publicly available National Aeronautics and Space Administration Atmospheric Infrared Sounder data. At the same time, the proposed method is practically applicable because it is not computationally prohibitive.
引用
收藏
页码:495 / 498
页数:4
相关论文
共 50 条
  • [31] Lossless Compression of Hyperspectral Images Using Clustered Linear Prediction With Adaptive Prediction Length
    Mielikainen, Jarno
    Huang, Bormin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (06) : 1118 - 1121
  • [32] Clustered linear prediction for lossless compression of hyperspectral images using adaptive prediction length
    Mielikainen, Jarno
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING VI, 2010, 7810
  • [33] Classification and prediction of wavelet coefficients for lossless compression of landsat images
    Acevedo, Daniel
    Ruedin, Ana
    SATELLITE DATA COMPRESSION, COMMUNICATIONS AND ARCHIVING II, 2006, 6300
  • [34] An optimal unequal error protection scheme with turbo product codes for wavelet compression of ultraspectral sounder data
    Huang, Bormin
    Sriraja, Y.
    Ahuja, Alok
    Goldberg, Mitchell D.
    SATELLITE DATA COMPRESSION, COMMUNICATIONS AND ARCHIVING II, 2006, 6300
  • [35] Lossless hyperspectral image compression via linear prediction
    Mielikainen, J
    Kaarna, A
    Toivanen, P
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII, 2002, 4725 : 600 - 608
  • [36] Image compression using linear prediction operator of wavelet coefficients
    Selvarajan, S.
    Kodikara, N. D.
    Wimalaratne, G. D. S. P.
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2009, 37 (03): : 167 - 174
  • [37] Electrocardiogram data compression algorithm based on the linear prediction of the wavelet coefficients
    Abo-Zahhad, M
    Ahmed, SM
    Al-Shrouf, A
    ICECS 2000: 7TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS & SYSTEMS, VOLS I AND II, 2000, : 599 - 603
  • [38] Prediction of wavelet transform coefficients using neural networks applied to lossless compression of multispectral images
    Acevedo, Daniel G.
    Ruedin, Ana M. C.
    Seijas, Leticia M.
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND ARCHIVING III, 2007, 6683
  • [39] Lossless compression 3D hyperspectral sounder data using the wavelet and Burrows-Wheller transforms
    Wei, SC
    Huang, BM
    ATMOSPHERIC AND ENVIRONMENTAL REMOTE SENSING DATA PROCESSING AND UTILIZATION: AN END TO END SYSTEM PERSPECTIVE, 2004, 5548 : 78 - 87
  • [40] A lossless compression algorithm for aurora spectral data using online regression prediction
    Kong, Wanqiu
    Wu, Jiaji
    HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING V, 2015, 9646