Solar Energy Materials & Solar Cells

被引:0
|
作者
Haq, Bakhtiar Ul [1 ]
Ahmed, Rashid [1 ]
Goumri-Said, Souraya [2 ,3 ]
机构
[1] Univ Teknol Malaysia, Fac Sci, Dept Phys, Utm Skudai 81310, Johor, Malaysia
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA
关键词
ZnO; Wurtzite; Zincblende; DFT; FP-LAPW; mBJ; Electronic structure; Absorption spectra; PULSED-LASER DEPOSITION; DOPED ZNO FILMS; THIN-FILMS; ELECTRONIC-STRUCTURE; ELECTRICAL-PROPERTIES; OPTICAL-PROPERTIES; SPUTTERED ZNO; DAMP HEAT; 1ST-PRINCIPLES; OXIDE;
D O I
10.1016/j.solmat.2014.06.014
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tailoring the energy gap of ZnO through Cd doping renders Cd:ZnO an intriguing material for photovoltaic and solar cell applications. Unfortunately, the Cd:ZnO blend is unstable, a feature attributed to the structural differences between the parent hexagonal ZnO and cubic CdO. We here report a comparative density functional theory (DFT) study of zinc-blend (ZB) and wurtzite (WZ) ZnO doped with Cd - upto 37.5% of the Zn atoms were substituted by an isovalent Cd. Interestingly, the nearly equivalent total energy of the ZB and WZ Cd:ZnO blends reflects the relative stability of the cubic phase. The formation enthalpies increase linearly with increasing Cd concentration. Cd insertion into ZnO is found to have an insignificant effect on the ZnO structure, with only a slight increase of the lattice constants that follow Vegard's formulation. Cd dopants efficiently reduce the electronic band gap of ZnO and in turn the absorption edge and optical energy gap are red-shifted. The Cd:ZnO blends exhibit a lower energy gap in the cubic phase as compared to the hexagonal phase, suggesting that a specific energy gap can be achieved at relatively lower Cd contents in the ZB. The lighter effective free-carrier masses in WZ-Cd:ZnO suggest a higher conductivity and mobility as compared to ZB and the parent ZnO. The narrow energy gaps indicate that both hexagonal and cubic Cd:ZnO systems have potential as material for solar energy applications. (C)2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:6 / 14
页数:9
相关论文
共 50 条
  • [31] Global Utilization of Solar Energy and Development of Solar Cell Materials
    Ma, Chun
    Zhang, Xiaochun
    Zhang, Guangyu
    Chen, Weiping
    Gu, Song
    [J]. PROGRESS IN RENEWABLE AND SUSTAINABLE ENERGY, PTS 1 AND 2, 2013, 608-609 : 151 - +
  • [32] Nanostructured solar irradiation control materials for solar energy conversion
    Kang, J. H.
    Marshall, I. A.
    Torrico, M. N.
    Taylor, C. R.
    Ely, Jeffry
    Henderson, Angel Z.
    Kim, J. -W.
    Sauti, G.
    Gibbons, L. J.
    Park, C.
    Lowther, S. E.
    Lillehei, P. T.
    Bryant, R. G.
    [J]. NEXT GENERATION (NANO) PHOTONIC AND CELL TECHNOLOGIES FOR SOLAR ENERGY CONVERSION III, 2012, 8471
  • [33] Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries
    Ye, Youngjin
    Jo, Changshin
    Jeong, Inyoung
    Lee, Jinwoo
    [J]. NANOSCALE, 2013, 5 (11) : 4584 - 4605
  • [34] THIN MULTI JUNCTION SOLAR CELLS OF III-V MATERIALS TO ADVANCE SOLAR ENERGY HARVESTING
    Castelletto, S.
    Parker, A.
    [J]. THIN FILM SOLAR TECHNOLOGY V, 2013, 8823
  • [35] SOLAR ENERGY Performance of Nanowire Solar Cells on the Rise
    Service, Robert F.
    [J]. SCIENCE, 2013, 339 (6117) : 263 - 263
  • [36] Solar energy - Solar cells by self-assembly?
    Nelson, J
    [J]. SCIENCE, 2001, 293 (5532) : 1059 - 1060
  • [37] Energy Spotlight Advances in Solar Cells and Solar Fuels
    Boettcher, Shannon W.
    Zhu, Kai
    Ma, Dongling
    Boettcher, Shannon W.
    [J]. ACS ENERGY LETTERS, 2020, 5 (08): : 2739 - 2741
  • [38] State of the art Solar Energy Materials
    Titus, Elby
    Ventura, Joao
    Araujo, Joao Pedro
    Gil, Joao Campos
    [J]. SOLAR ENERGY, 2018, 172 : 103 - 103
  • [39] ALTERNATIVE MATERIALS TO SOLAR ENERGY USE
    Macedo Neto, M. C.
    Gomes, I. R. B.
    Santos Junior, Z. J.
    Oliveira, E. V.
    Souza, L. G. M.
    [J]. HOLOS, 2014, 30 (04) : 212 - 223
  • [40] Solar Energy: Materials, Devices, and Applications
    Yang, Ru-Yuan
    Huang, Yu-Pei
    Amin, Nowshad
    Sun, Fengqiang
    [J]. ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2012, 2012