Solar Energy Materials & Solar Cells

被引:55
|
作者
Haq, Bakhtiar Ul [1 ]
Ahmed, Rashid [1 ]
Goumri-Said, Souraya [2 ,3 ]
机构
[1] Univ Teknol Malaysia, Fac Sci, Dept Phys, Utm Skudai 81310, Johor, Malaysia
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA
关键词
ZnO; Wurtzite; Zincblende; DFT; FP-LAPW; mBJ; Electronic structure; Absorption spectra; PULSED-LASER DEPOSITION; DOPED ZNO FILMS; THIN-FILMS; ELECTRONIC-STRUCTURE; ELECTRICAL-PROPERTIES; OPTICAL-PROPERTIES; SPUTTERED ZNO; DAMP HEAT; 1ST-PRINCIPLES; OXIDE;
D O I
10.1016/j.solmat.2014.06.014
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tailoring the energy gap of ZnO through Cd doping renders Cd:ZnO an intriguing material for photovoltaic and solar cell applications. Unfortunately, the Cd:ZnO blend is unstable, a feature attributed to the structural differences between the parent hexagonal ZnO and cubic CdO. We here report a comparative density functional theory (DFT) study of zinc-blend (ZB) and wurtzite (WZ) ZnO doped with Cd - upto 37.5% of the Zn atoms were substituted by an isovalent Cd. Interestingly, the nearly equivalent total energy of the ZB and WZ Cd:ZnO blends reflects the relative stability of the cubic phase. The formation enthalpies increase linearly with increasing Cd concentration. Cd insertion into ZnO is found to have an insignificant effect on the ZnO structure, with only a slight increase of the lattice constants that follow Vegard's formulation. Cd dopants efficiently reduce the electronic band gap of ZnO and in turn the absorption edge and optical energy gap are red-shifted. The Cd:ZnO blends exhibit a lower energy gap in the cubic phase as compared to the hexagonal phase, suggesting that a specific energy gap can be achieved at relatively lower Cd contents in the ZB. The lighter effective free-carrier masses in WZ-Cd:ZnO suggest a higher conductivity and mobility as compared to ZB and the parent ZnO. The narrow energy gaps indicate that both hexagonal and cubic Cd:ZnO systems have potential as material for solar energy applications. (C)2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:6 / 14
页数:9
相关论文
共 50 条
  • [1] Solar cells and solar energy materials
    Mathew, X
    [J]. SOLAR ENERGY, 2006, 80 (02) : 141 - 141
  • [2] Solar Energy Materials & Solar Cells
    Teal, Anthony
    Dore, Jonathon
    Varlamov, Sergey
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 130 : 1 - 5
  • [3] Solar Energy Materials and Solar Cells
    Soltanmohammad, Sina
    Shafarman, William N.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 : 142 - 157
  • [4] Priority publishing in Solar Energy Materials and Solar Cells
    Smestad, Greg P.
    Krebs, Frederik C.
    Granqvist, Claes G.
    Chopra, Kasturi L.
    Mathew, Xavier
    Gordon, Ivan
    Lampert, Carl M.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (07) : 1187 - 1190
  • [5] Topical editors in solar energy materials and solar cells
    Smestad, Greg P.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (05) : 521 - 521
  • [6] Solar cells & solar energy materials: Cancun 2003
    Mathew, X
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2004, 82 (1-2) : 1 - 2
  • [7] Solar Cells & Solar Energy Materials - Cancun 2004
    Mathew, X
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (06) : 663 - 663
  • [8] Reporting solar cell efficiencies in solar energy materials and solar cells
    Smestad, Greg P.
    Krebs, Frederik C.
    Lampert, Carl M.
    Granqvist, Claes G.
    Chopra, K. L.
    Mathew, Xavier
    Takakura, Hideyuki
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (04) : 371 - 373
  • [9] Solar cells and solar energy materials - IMRC 2005, Cancun, Mexico
    Mathew, Xavier
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (15) : 2169 - 2169
  • [10] Solar Energy and Solar Cells
    Ma, Dongling
    [J]. NANOMATERIALS, 2021, 11 (10)