VARIATIONS OF STATISTICS FOR RANDOM WAVES PROPAGATING OVER A BAR

被引:9
|
作者
Ma, Yu-Xiang [1 ]
Ma, Xiao-Zhou [1 ]
Dong, Guo-Hai [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian, Peoples R China
来源
关键词
random waves; wave statistical parameters; freak waves; wavelet-based bicoherence; ROGUE WAVES; GROUPINESS; KURTOSIS;
D O I
10.6119/JMST-015-0610-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A series of physical experiments were conducted on the variations of statistics (skewness, kurtosis, groupiness) in random waves propagating over a submerged symmetrical bar. Random waves were generated using JONSWAP spectra while varying initial spectral width, wave height and peak frequency. It was found that the initial spectral width has a negligible effect on the variations of these statistical parameters. An abrupt change in wave groupiness is caused by wave breaking. Variations in the skewness and kurtosis mainly depend on the local water depth and wave height and period. Furthermore, the relationship between the skewness and kurtosis in the shoaling region is well predicted by the formula of Mori and Kobayashi (1998), but on the crest of the bar, the formula should be adjusted. Additionally, extreme waves that satisfy the definition of freak waves can be formed in the shoaling region close to the top of the bar. The probability occurrence of the freak waves has a negligible relationship with the initial spectral width, but the appearance of the extreme waves encounters with the increase of groupiness.
引用
收藏
页码:864 / 869
页数:6
相关论文
共 50 条
  • [31] Attenuation of shock waves propagating over arrayed spheres
    Abe, A
    Takayama, K
    24TH INTERNATIONAL CONGRESS ON HIGH-SPEED PHOTOGRAPHY AND PHOTONICS, 2001, 4183 : 582 - 589
  • [32] On waves propagating over poro-elastic seabed
    Lee, JF
    Lan, YJ
    OCEAN ENGINEERING, 2002, 29 (08) : 931 - 946
  • [33] Long waves propagating over a circular bowl pit
    Suh, KD
    Jung, TH
    Haller, MC
    WAVE MOTION, 2005, 42 (02) : 143 - 154
  • [34] Surface water waves propagating over a submerged forest
    Hu, Jie
    Hu, Zhan
    Liu, Philip L-F
    COASTAL ENGINEERING, 2019, 152
  • [35] Nonlinear water waves propagating over a permeable bed
    Hsiao, SC
    Liu, PLF
    Chen, Y
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2022): : 1291 - 1322
  • [36] Modeling spectra of breaking waves propagating over a beach
    Eldeberky, Y.
    AIN SHAMS ENGINEERING JOURNAL, 2011, 2 (02) : 71 - 77
  • [37] Transformation of irregular waves propagating over a submerged breakwater
    Lee, Cheng-Hsien
    Shen, Mao-Lin
    Huang, Ching-Jer
    PROCEEDINGS OF THE SEVENTEENTH (2007) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1- 4, PROCEEDINGS, 2007, : 2569 - 2574
  • [38] Coupling model for waves propagating over a porous seabed
    Liao, C. C.
    Lin, Z.
    Guo, Y.
    Jeng, D. -S.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2015, 5 (02) : 85 - 88
  • [39] High statistics study of (p)over-bar-n→K(K)over-barπ
    Wallis-Plachner, S
    NUCLEAR PHYSICS A, 2001, 692 (1-2) : 326C - 330C
  • [40] RANDOM-MATRIX-THEORY APPROACH TO THE INTENSITY DISTRIBUTIONS OF WAVES PROPAGATING IN A RANDOM MEDIUM
    KOGAN, E
    KAVEH, M
    PHYSICAL REVIEW B, 1995, 52 (06) : R3813 - R3815