liver perfusion;
a single compartmental model;
CT perfusion;
linear least squares;
D O I:
10.1118/1.2219773
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
Voxel-by-voxel estimation of liver perfusion using nonlinear least-squares fits of dynamic contrast enhanced computed tomography or magnetic resonance imaging data to a compartmental model is a computational expensive process. In this report, a "linear" least-squares method for estimation of liver perfusion is described. Simulated data and the data from an example case of a patient with intrahepatic cancer are presented. Compared to the nonlinear method, the new method can improve computational speed by a factor of similar to 400, which makes it practical for use in clinical trials. (C) 2006 American Association of Physicists in Medicine.
机构:
Sunnybrook Res Inst, Phys Sci, Toronto, ON M4N 3M5, Canada
Univ Toronto, Med Biophys, Toronto, ON, CanadaSunnybrook Res Inst, Phys Sci, Toronto, ON M4N 3M5, Canada
Lau, Justin Y. C.
Chen, Albert P.
论文数: 0引用数: 0
h-index: 0
机构:
GE Healthcare, Toronto, ON, CanadaSunnybrook Res Inst, Phys Sci, Toronto, ON M4N 3M5, Canada
Chen, Albert P.
Gu, Yi-Ping
论文数: 0引用数: 0
h-index: 0
机构:
Sunnybrook Res Inst, Phys Sci, Toronto, ON M4N 3M5, CanadaSunnybrook Res Inst, Phys Sci, Toronto, ON M4N 3M5, Canada
Gu, Yi-Ping
Cunningham, Charles H.
论文数: 0引用数: 0
h-index: 0
机构:
Sunnybrook Res Inst, Phys Sci, Toronto, ON M4N 3M5, Canada
Univ Toronto, Med Biophys, Toronto, ON, CanadaSunnybrook Res Inst, Phys Sci, Toronto, ON M4N 3M5, Canada