A practical approach for quantitative estimates of voxel-by-voxel liver perfusion using DCE imaging and a compartmental model

被引:10
|
作者
Cao, Yue [1 ]
Alspaugh, Jonathan
Shen, Zhou
Balter, James M.
Lawrence, Theodore S.
Ten Haken, Randall K.
机构
[1] Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
关键词
liver perfusion; a single compartmental model; CT perfusion; linear least squares;
D O I
10.1118/1.2219773
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Voxel-by-voxel estimation of liver perfusion using nonlinear least-squares fits of dynamic contrast enhanced computed tomography or magnetic resonance imaging data to a compartmental model is a computational expensive process. In this report, a "linear" least-squares method for estimation of liver perfusion is described. Simulated data and the data from an example case of a patient with intrahepatic cancer are presented. Compared to the nonlinear method, the new method can improve computational speed by a factor of similar to 400, which makes it practical for use in clinical trials. (C) 2006 American Association of Physicists in Medicine.
引用
收藏
页码:3057 / 3062
页数:6
相关论文
共 50 条
  • [1] Voxel-by-voxel correlations of perfusion, substrate, and metabolite signals in dynamic hyperpolarized 13C imaging
    Lau, Justin Y. C.
    Chen, Albert P.
    Gu, Yi-Ping
    Cunningham, Charles H.
    [J]. NMR IN BIOMEDICINE, 2016, 29 (08) : 1038 - 1047
  • [2] Three-Dimensional Voxel-By-Voxel Motion Tracking of Mobile Phantoms Using Microwave Imaging
    Alsbou, N.
    Ahmad, S.
    Ali, I.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E332 - E332
  • [3] Efficient implementation of a filtered back-projection algorithm using a voxel-by-voxel approach
    Orlov, Igor M.
    Morgan, David Gene
    Cheng, R. Holland
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2006, 154 (03) : 287 - 296
  • [4] A Voxel-By-Voxel Motion Modeling Algorithm Using Deformable Image Registration and 4D-CT Imaging
    Meyers, T.
    Alsbou, N.
    Algan, O.
    Ahmad, S.
    Ali, I.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E733 - E733
  • [5] MAP-based kinetic analysis for voxel-by-voxel compartment model estimation: Detailed imaging of the cerebral glucose metabolism using FDG
    Kimura, Y
    Naganawa, M
    Yamaguchi, J
    Takabayashi, Y
    Uchiyama, A
    Oda, K
    Ishii, K
    Ishiwata, K
    [J]. NEUROIMAGE, 2006, 29 (04) : 1203 - 1211
  • [6] Multiparametric MR and PET Imaging of Intratumoral Biological Heterogeneity in Patients with Metastatic Lung Cancer Using Voxel-by-Voxel Analysis
    Metz, Stephan
    Ganter, Carl
    Lorenzen, Sylvie
    van Marwick, Sandra
    Holzapfel, Konstantin
    Herrmann, Ken
    Rummeny, Ernst J.
    Wester, Hans-Juergen
    Schwaiger, Markus
    Nekolla, Stephan G.
    Beer, Ambros J.
    [J]. PLOS ONE, 2015, 10 (07):
  • [7] Quantitative myocardial perfusion PET parametric imaging at the voxel-level
    Mohy-ud-Din, Hassan
    Lodge, Martin
    Rahmim, Arman
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03)
  • [8] Quantitative myocardial perfusion PET parametric imaging at the voxel-level
    Mohy-ud-Din, Hassan
    Lodge, Martin A.
    Rahmim, Arman
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (15): : 6013 - 6037
  • [9] Portal Venous Perfusion Quantitation From Liver DCE-MRI by Voxel Uptake Curve Clustering and Input Function Normalization
    Johansson, A.
    Balter, J.
    Feng, M.
    Cao, Y.
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3833 - 3833
  • [10] Linearization of Compartmental Models for More Robust Estimates of Regional Hemodynamic, Metabolic and Functional Parameters using DCE-CTMET Imaging
    Blais, A. R.
    Dekaban, M.
    Lee, T-Y
    [J]. MEDICAL PHYSICS, 2014, 41 (08) : 16 - 16