Using Data Clustering to Optimize Scatter Bitmap Index for Membership Queries

被引:0
|
作者
Weahama, Weahason [1 ]
Vanichayobon, Sirirut [1 ]
Manfuekphan, Jarin [1 ]
机构
[1] Prince Songkla Univ, Fac Engn, Songkhla, Thailand
关键词
data warehouse; bitmap index; clustering;
D O I
10.1109/ICCAE.2009.33
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decision support systems that retrieve information from a data warehouse environment are usually designed to process complex and ad hoc queries. Indexing techniques based on bitmap representations can be used to improve the efficiency of information retrieval. Scatter Bitmap Index uses less space and is more CPU-efficient than other bitmap indexing techniques. It is simple to represent, and improves query processing time by utilizing low-cost Boolean operations and multiple index scans. The Scatter Bitmap Index technique performs simple predicate conditions on the index level before going to the primary data source. Furthermore, Scatter Bitmap Index can be optimized by applying K-mode Clustering, which finds relationships among attribute values in queries. In this paper, we show that Data Clustering with Scatter Bitmap Index can improve query processing time for membership queries.
引用
收藏
页码:174 / 178
页数:5
相关论文
共 50 条
  • [21] A Survey of Bitmap Index Compression Algorithms for Big Data
    Zhen Chen
    Yuhao Wen
    Junwei Cao
    Wenxun Zheng
    Jiahui Chang
    Yinjun Wu
    Ge Ma
    Mourad Hakmaoui
    Guodong Peng
    [J]. Tsinghua Science and Technology, 2015, 20 (01) : 100 - 115
  • [22] A data mining approach for efficient selection bitmap join index
    Necir, Hamid
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2010, 2 (03) : 238 - 251
  • [23] Template-Based Bitmap View Selection for Optimizing Queries Over Tree Data
    Wu, Xiaoying
    Theodoratos, Dimitri
    [J]. INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS, 2016, 25 (03)
  • [24] Efficient of bitmap join indexes for optimising star join queries in relational data warehouses
    Yahyaoui, Mohammed
    Amjad, Souad
    Benameur, Lamia
    Jellouli, Ismail
    [J]. International Journal of Computational Intelligence Studies, 2020, 9 (03) : 220 - 233
  • [25] CAMP: A New Bitmap Index for Data Retrieval in Traffic Archivaln
    Wu, Yinjun
    Chen, Zhen
    Cao, Junwei
    Li, Haoxun
    Li, Chenxing
    Wang, Yijie
    Zheng, Wenxun
    Chang, Jiahui
    Zhou, Jing
    Hu, Ziwei
    Guo, Jinghong
    [J]. IEEE COMMUNICATIONS LETTERS, 2016, 20 (06) : 1128 - 1131
  • [26] A new bitmap index and a new data cube compression technology
    Xi, Jianqing
    Chen, Fuqiang
    Zhang, Pingjian
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2008, PT 2, PROCEEDINGS, 2008, 5073 : 1218 - 1228
  • [27] BAH: A Bitmap Index Compression Algorithm for Fast Data Retrieval
    Li, Chenxing
    Chen, Zhen
    Zheng, Wenxun
    Wu, Yinjun
    Cao, Junwei
    [J]. 2016 IEEE 41ST CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN), 2016, : 697 - 705
  • [28] HOBI: Hierarchically Organized Bitmap Index for Indexing Dimensional Data
    Chmiel, Jan
    Morzy, Tadeusz
    Wrembel, Robert
    [J]. DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2009, 5691 : 87 - +
  • [29] COMBAT: A New Bitmap Index Coding Algorithm for Big Data
    Yinjun Wu
    Zhen Chen
    Yuhao Wen
    Wenxun Zheng
    Junwei Cao
    [J]. Tsinghua Science and Technology, 2016, 21 (02) : 136 - 145
  • [30] Fuzzy clustering using scatter matrices
    Rousseeuw, PJ
    Kaufman, L
    Trauwaert, E
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1996, 23 (01) : 135 - 151