iterative Monte Carlo algorithm;
quasi-random sequences;
polynomial approximations;
numerical integration;
D O I:
10.1023/B:STCO.0000039482.91826.ce
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
We improve a Monte Carlo algorithm which computes accurate approximations of smooth functions on multidimensional Tchebychef polynomials by using quasi-random sequences. We first show that the convergence of the previous algorithm is twice faster using these sequences. Then, we slightly modify this algorithm to make it work from a single set of random or quasi-random points. This especially leads to a Quasi-Monte Carlo method with an increased rate of convergence for numerical integration.
机构:
Univ Hong Kong, Fac Business & Econ, Hong Kong, Hong Kong, Peoples R ChinaUniv Hong Kong, Fac Business & Econ, Hong Kong, Hong Kong, Peoples R China
机构:
Univ Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre S-N, P-4169007 Porto, PortugalUniv Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
Lima, Nilson J.
Matos, Jose A. O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Ciencias, Fac Econ, Dept Matemat,CMUP, Rua Dr Roberto Frias S-N, P-4200464 Porto, PortugalUniv Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
Matos, Jose A. O.
Vasconcelos, Paulo B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Ciencias, Fac Econ, Dept Matemat,CMUP, Rua Dr Roberto Frias S-N, P-4200464 Porto, PortugalUniv Porto, Fac Ciencias, Dept Matemat, CMUP, Rua Campo Alegre S-N, P-4169007 Porto, Portugal