Transition from Abelian to non-Abelian quantum liquids in the second Landau level

被引:38
|
作者
Wojs, Arkadiusz [1 ,2 ]
机构
[1] Univ Cambridge, Cavendish Lab, TCM Grp, Cambridge CB3 0HE, England
[2] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland
关键词
HALL STATES; FLUID;
D O I
10.1103/PhysRevB.80.041104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The search for non-Abelian quantum Hall states in the second Landau level is narrowed to the range of filling factors 7/3 < nu(e) 8/3. In this range, the analysis of energy spectra and correlation functions, calculated including finite width and Landau-level mixing, supports the prominent non-Abelian candidates at nu(e) = 5/2 (Moore-Read) and 12/5 (Read-Rezayi). Outside of it, the four-flux noninteracting composite fermion model is validated. The borderline nu(e) = 7/3 state is adiabatically connected to the Laughlin liquid, but its short-range correlations and charge excitations are different.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Anatomy of Abelian and Non-Abelian Fractional Quantum Hall States
    Bernevig, B. Andrei
    Regnault, N.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (20)
  • [22] Non-Abelian topological spin liquids from arrays of quantum wires or spin chains
    Huang, Po-Hao
    Chen, Jyong-Hao
    Gomes, Pedro R. S.
    Neupert, Titus
    Chamon, Claudio
    Mudry, Christopher
    [J]. PHYSICAL REVIEW B, 2016, 93 (20)
  • [23] Quantum computing with non-Abelian quasiparticles
    Bonesteel, N. E.
    Hormozi, L.
    Zikos, G.
    Simon, S. H.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (8-9): : 1372 - 1378
  • [24] The non-Abelian bosonic quantum ring
    M. Merkl
    G. Juzeliūnas
    P. Öhberg
    [J]. The European Physical Journal D, 2010, 59 : 257 - 267
  • [25] The non-Abelian bosonic quantum ring
    Merkl, M.
    Juzeliunas, G.
    Oehberg, P.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (02): : 257 - 267
  • [26] Non-abelian Quantum Statistics on Graphs
    Maciazek, Tomasz
    Sawicki, Adam
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (03) : 921 - 973
  • [27] Non-Abelian Statistics in a Quantum Antiferromagnet
    Greiter, Martin
    Thomale, Ronny
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [28] Quantum Walks with Non-Abelian Anyons
    Lehman, Lauri
    Zatloukal, Vaclav
    Brennen, Gavin K.
    Pachos, Jiannis K.
    Wang, Zhenghan
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (23)
  • [29] Search for electron liquids with non-Abelian quasiparticles
    Wojs, Arkadiusz
    [J]. SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2010, 213
  • [30] Non-abelian Quantum Statistics on Graphs
    Tomasz Maciążek
    Adam Sawicki
    [J]. Communications in Mathematical Physics, 2019, 371 : 921 - 973