Coloring of trees with minimum sum of colors

被引:0
|
作者
Jiang, T [1 ]
West, DB [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
关键词
chromatic sum; minimal coloring; strength;
D O I
10.1002/(SICI)1097-0118(199912)32:4<354::AID-JGT4>3.0.CO;2-B
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The chromatic sum od a graph is the smallest sum of colors among all proper colorings with natural numbers. The strength is the minimum number of colors needed to achieve the chromatic sum. We construct for each positive integer k: a tree with strength k that has maximum degree only 2k - 2. The result is best possible. (C) 1999 John Wiley & Sons, Inc. J Graph Theory 32: 354-358, 1999.
引用
收藏
页码:354 / 358
页数:5
相关论文
共 50 条
  • [1] Minimum sum set coloring of trees and line graphs of trees
    Bonomo, Flavia
    Duran, Guillermo
    Marenco, Javier
    Valencia-Pabon, Mario
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (05) : 288 - 294
  • [2] Sum coloring and interval graphs: a tight upper bound for the minimum number of colors
    Nicoloso, S
    [J]. DISCRETE MATHEMATICS, 2004, 280 (1-3) : 251 - 257
  • [3] A memetic algorithm for the Minimum Sum Coloring Problem
    Jin, Yan
    Hao, Jin-Kao
    Hamiez, Jean-Philippe
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2014, 43 : 318 - 327
  • [4] Algorithms for the minimum sum coloring problem: a review
    Yan Jin
    Jean-Philippe Hamiez
    Jin-Kao Hao
    [J]. Artificial Intelligence Review, 2017, 47 : 367 - 394
  • [5] Algorithms for the minimum sum coloring problem: a review
    Jin, Yan
    Hamiez, Jean-Philippe
    Hao, Jin-Kao
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2017, 47 (03) : 367 - 394
  • [6] Complexity results for minimum sum edge coloring
    Daniel Marx
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1034 - 1045
  • [7] Total Colorings of Graphs with Minimum Sum of Colors
    Ewa M. Kubicka
    Grzegorz M. Kubicki
    Maxfield Leidner
    [J]. Graphs and Combinatorics, 2016, 32 : 2515 - 2524
  • [8] Total Colorings of Graphs with Minimum Sum of Colors
    Kubicka, Ewa M.
    Kubicki, Grzegorz M.
    Leidner, Maxfield
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (06) : 2515 - 2524
  • [9] Minimum sum multicoloring on the edges of trees
    Marx, Daniel
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 361 (2-3) : 133 - 149
  • [10] Online edge coloring of paths and trees with a fixed number of colors
    Lene M. Favrholdt
    Jesper W. Mikkelsen
    [J]. Acta Informatica, 2018, 55 : 57 - 80