Complexity results for minimum sum edge coloring

被引:9
|
作者
Daniel Marx [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, H-1521 Budapest, Hungary
关键词
Graph coloring; Minimum sum coloring; NP-completeness; PRECOLORING EXTENSION; CHROMATIC SUM; INTERVAL; COMPLETENESS; ALGORITHM; GRAPHS;
D O I
10.1016/j.dam.2008.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the MINIMUM SUM EDGE COLORING problem we have to assign positive integers to the edges of a graph such that adjacent edges receive different integers and the sum of the assigned numbers is minimal. We show that the problem is (a) NP-hard for planar bipartite graphs with maximum degree 3. (b) NP-hard for 3-regular planar graphs, (c) NP-hard for partial 2-trees, and (d) APX-hard for bipartite graphs. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1034 / 1045
页数:12
相关论文
共 50 条
  • [1] Complexity of edge coloring with minimum reload/changeover costs
    Gozupek, Didem
    Shalom, Mordechai
    [J]. NETWORKS, 2019, 73 (03) : 344 - 357
  • [2] On the algorithmic complexity of zero-sum edge-coloring
    Dehghan, Ali
    Sadeghi, Mohammad-Reza
    [J]. INFORMATION PROCESSING LETTERS, 2016, 116 (11) : 660 - 667
  • [3] The complexity of minimum convex coloring
    Kammer, Frank
    Tholey, Torsten
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (06) : 810 - 833
  • [4] The Complexity of Minimum Convex Coloring
    Kammer, Frank
    Tholey, Torsten
    [J]. ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 16 - 27
  • [5] Injective edge coloring of product graphs and some complexity results
    Bhanupriy, C. K.
    Dominic, Charles
    Sunitha, M. S.
    [J]. FILOMAT, 2023, 37 (12) : 3963 - 3983
  • [6] Coloring of trees with minimum sum of colors
    Jiang, T
    West, DB
    [J]. JOURNAL OF GRAPH THEORY, 1999, 32 (04) : 354 - 358
  • [7] A memetic algorithm for the Minimum Sum Coloring Problem
    Jin, Yan
    Hao, Jin-Kao
    Hamiez, Jean-Philippe
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2014, 43 : 318 - 327
  • [8] Algorithms for the minimum sum coloring problem: a review
    Yan Jin
    Jean-Philippe Hamiez
    Jin-Kao Hao
    [J]. Artificial Intelligence Review, 2017, 47 : 367 - 394
  • [9] Algorithms for the minimum sum coloring problem: a review
    Jin, Yan
    Hamiez, Jean-Philippe
    Hao, Jin-Kao
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2017, 47 (03) : 367 - 394
  • [10] On the computational complexity of strong edge coloring
    Mabdian, M
    [J]. DISCRETE APPLIED MATHEMATICS, 2002, 118 (03) : 239 - 248