Influence of differences in current GOSAT XCO2 retrievals on surface flux estimation

被引:39
|
作者
Takagi, Hiroshi [1 ]
Houweling, Sander [2 ,3 ]
Andres, Robert J. [4 ]
Belikov, Dmitry [1 ,5 ]
Bril, Andrey [1 ]
Boesch, Hartmut [6 ]
Butz, Andre [7 ]
Guerlet, Sandrine [2 ]
Hasekamp, Otto [2 ]
Maksyutov, Shamil [1 ]
Morino, Isamu [1 ]
Oda, Tomohiro [8 ,9 ]
O'Dell, Christopher W. [8 ]
Oshchepkov, Sergey [1 ]
Parker, Robert [6 ]
Saito, Makoto [1 ]
Uchino, Osamu [1 ]
Yokota, Tatsuya [1 ]
Yoshida, Yukio [1 ]
Valsala, Vinu [10 ]
机构
[1] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan
[2] Netherland Inst Space Res, Utrecht, Netherlands
[3] Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands
[4] Oak Ridge Natl Lab, Oak Ridge, TN USA
[5] Natl Inst Polar Res, Tokyo, Japan
[6] Univ Leicester, Dept Phys & Astron, EOS Grp, Leicester LE1 7RH, Leics, England
[7] Karlsruhe Inst Technol, Leopoldshafen, Germany
[8] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[9] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO USA
[10] Indian Inst Trop Meteorol, Pune, Maharashtra, India
关键词
CO2 sources and sinks; surface fluxes; inverse modeling; GOSAT; column CO2 concentration; GREENHOUSE GASES; REGIONAL CO2; SPECTROSCOPIC OBSERVATIONS; ALGORITHM; SATELLITE; VALIDATION; ROBUST; SPACE;
D O I
10.1002/2013GL059174
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We investigated differences in the five currently-available datasets of column-integrated CO2 concentrations (X-CO2) retrieved from spectral soundings collected by Greenhouse gases Observing SATellite (GOSAT) and assessed their impact on regional CO2 flux estimates. We did so by estimating the fluxes from each of the five X-CO2 datasets combined with surface-based CO2 data, using a single inversion system. The five X-CO2 datasets are available in raw and bias-corrected versions, and we found that the bias corrections diminish the range of the five coincident values by similar to 30% on average. The departures of the five individual inversion results (annual-mean regional fluxes based on X-CO2-surface combined data) from the surface-data-only results were close to one another in some terrestrial regions where spatial coverage by each X-CO2 dataset was similar. The mean of the five annual global land uptakes was 1.7 +/- 0.3 GtC yr(-1), and they were all smaller than the value estimated from the surface-based data alone.
引用
收藏
页码:2598 / 2605
页数:8
相关论文
共 50 条
  • [11] CONSISTENCY IN XCO2 RETRIEVALS FROM SCIAMACHY, GOSAT AND OCO-2 FOR SPATIO-TEMPORAL CHARACTERISTICS AT A GLOBAL SCALE
    Lei, Liping
    Zhong, Hui
    Wu, Changjiang
    Zeng, Zhaocheng
    He, Zhonghua
    Wu, Yanhong
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3120 - 3122
  • [12] Temporal and spatial analysis of global GOSAT XCO2 variations characteristics
    Wang Qian
    Lei Liping
    Liu Da
    Liu Min
    Qin Xiuchun
    Sun Baoming
    REMOTE SENSING OF THE ENVIRONMENT, 2015, 9669
  • [13] Combining GOSAT XCO2 observations over land and ocean to improve regional CO2 flux estimates
    Deng, Feng
    Jones, Dylan B. A.
    O'Dell, Christopher W.
    Nassar, Ray
    Parazoo, Nicholas C.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (04) : 1896 - 1913
  • [14] Carbon monitoring system flux estimation and attribution: impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks
    Liu, Junjie
    Bowman, Kevin W.
    Lee, Meemong
    Henze, Daven K.
    Bousserez, Nicolas
    Brix, Holger
    Collatz, G. James
    Menemenlis, Dimitris
    Ott, Lesley
    Pawson, Steven
    Jones, Dylan
    Nassar, Ray
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2014, 66
  • [15] A METHOD FOR PHYSICALLY FUSING XCO2 MEASUREMENTS RETRIEVED FROM SCIAMACHY AND GOSAT
    Wang, Tianxing
    Shi, Jiancheng
    Jing, Yingying
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3351 - 3354
  • [16] Estimates of European uptake of CO2 inferred from GOSAT XCO2 retrievals: sensitivity to measurement bias inside and outside Europe
    Feng, L.
    Palmer, P. I.
    Parker, R. J.
    Deutscher, N. M.
    Feist, D. G.
    Kivi, R.
    Morino, I.
    Sussmann, R.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (03) : 1289 - 1302
  • [17] The Significance of Fast Radiative Transfer for Hyperspectral SWIR XCO2 Retrievals
    Somkuti, Peter
    Bosch, Hartmut
    Parker, Robert J.
    ATMOSPHERE, 2020, 11 (11)
  • [18] Spectroscopic uncertainty impacts on OCO-2/3 retrievals of XCO2
    Hobbs, Jonathan M.
    Drouin, Brian J.
    Oyafuso, Fabiano
    Payne, Vivienne H.
    Gunson, Michael R.
    McDuffie, James
    Mlawer, Eli J.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 257
  • [19] Improved Consistency of Satellite XCO2 Retrievals Based on Machine Learning
    Huang, Xiaoting
    Deng, Zhu
    Jiang, Fei
    Zhou, Minqiang
    Lin, Xiaojuan
    Liu, Zhu
    Peng, Muyan
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (08)
  • [20] Ability of the 4-D-Var analysis of the GOSAT BESD XCO2 retrievals to characterize atmospheric CO2 at large and synoptic scales
    Massart, Sebastien
    Agusti-Panareda, Anna
    Heymann, Jens
    Buchwitz, Michael
    Chevallier, Frederic
    Reuter, Maximilian
    Hilker, Michael
    Burrows, John P.
    Deutscher, Nicholas M.
    Feist, Dietrich G.
    Hase, Frank
    Sussmann, Ralf
    Desmet, Filip
    Dubey, Manvendra K.
    Griffith, David W. T.
    Kivi, Rigel
    Petri, Christof
    Schneider, Matthias
    Velazco, Voltaire A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (03) : 1653 - 1671