Hyper-heuristics applied to class and exam timetabling problems

被引:15
|
作者
Ross, P [1 ]
Marín-Bláuquez, JG [1 ]
Hart, E [1 ]
机构
[1] Napier Univ, Sch Comp, Edinburgh EH10 5DT, Midlothian, Scotland
关键词
D O I
10.1109/CEC.2004.1331099
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Combinatorial optimisation algorithms can be both slow and fragile. That is, the quality of results produced can vary considerably with the problem and with the parameters chosen and the user must hope or the best or search for problem-specific good parameters. The idea of hyper-heuristics is to search for a good, fast, deterministic algorithm built from easily-understood heuristics that shows good performance across a range of problems. In this paper we show how the idea can be applied to class and exam timetabling problems and report results on non-trivial problems. Unlike many optimisation algorithms, the generated algorithm does not involve and solution-improving search step, it is purely constructive.
引用
收藏
页码:1691 / 1698
页数:8
相关论文
共 50 条
  • [31] Recent advances in selection hyper-heuristics
    Drake, John H.
    Kheiri, Ahmed
    Ozcan, Ender
    Burke, Edmund K.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 285 (02) : 405 - 428
  • [32] Adaptive Thompson Sampling for Hyper-heuristics
    Alanazi, Fawaz
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [33] Hyper-heuristics: a survey of the state of the art
    Burke, Edmund K.
    Gendreau, Michel
    Hyde, Matthew
    Kendall, Graham
    Ochoa, Gabriela
    Oezcan, Ender
    Qu, Rong
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2013, 64 (12) : 1695 - 1724
  • [34] New Insights Into Diversification of Hyper-Heuristics
    Ren, Zhilei
    Jiang, He
    Xuan, Jifeng
    Hu, Yan
    Luo, Zhongxuan
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (10) : 1747 - 1761
  • [35] Hyper-Heuristics and Scheduling Problems: Strategies, Application Areas, and Performance Metrics
    Vela, Alonso
    Valencia-Rivera, Gerardo Humberto
    Cruz-Duarte, Jorge M.
    Ortiz-Bayliss, Jose Carlos
    Amaya, Ivan
    IEEE ACCESS, 2025, 13 : 14983 - 14997
  • [36] Selection hyper-heuristics in dynamic environments
    Kiraz, B.
    Etaner-Uyar, A. S.
    Ozcan, E.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2013, 64 (12) : 1753 - 1769
  • [37] Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems
    Qu, Rong
    Burke, Edmund K.
    McCollum, Barry
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 198 (02) : 392 - 404
  • [38] Multi-step environment learning classifier systems applied to hyper-heuristics
    Marin-Blazquez, Javier G.
    Schulenburg, Sonia
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 1521 - +
  • [39] A methodology for determining an effective subset of heuristics in selection hyper-heuristics
    Soria-Alcaraz, Jorge A.
    Ochoa, Gabriela
    Sotelo-Figeroa, Marco A.
    Burke, Edmund K.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 260 (03) : 972 - 983
  • [40] Building General Hyper-Heuristics for Multi-Objective Cutting Stock Problems
    Carlos Gomez, Juan
    Terashima-Marin, Hugo
    COMPUTACION Y SISTEMAS, 2012, 16 (03): : 321 - 334