Global error estimation with adaptive explicit Runge-Kutta methods

被引:14
|
作者
Calvo, M [1 ]
Higham, DJ [1 ]
Montijano, JI [1 ]
Randez, L [1 ]
机构
[1] UNIV DUNDEE,DEPT MATH & COMP SCI,DUNDEE DD1 4HN,SCOTLAND
关键词
D O I
10.1093/imanum/16.1.47
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Users of locally-adaptive software for initial value ordinary differential equations are likely to be concerned with global errors. At the cost of extra computation, global error estimation is possible. Zadunaisky's method and 'solving for the error estimate' are two techniques that have been successfully incorporated into Runge-Kutta algorithms. The standard error analysis for these techniques, however, does not take account of the stepsize selection mechanism. In this paper, some new results are presented which, under suitable assumptions show that these techniques are asymptotically valid when used with an adaptive, variable stepsize algorithm-the global error estimate reproduces the leading term of the global error in the limit as the error tolerance tends to zero. The analysis is also applied to Richardson extrapolation (step halving). Numerical results are provided for the technique of solving for the error estimate with several Runge-Kutta methods of Dormand, Lockyer, McGorrigan and Prince.
引用
下载
收藏
页码:47 / 63
页数:17
相关论文
共 50 条
  • [21] ERROR ESTIMATION IN RUNGE-KUTTA PROCEDURES
    CALL, DH
    REEVES, RF
    COMMUNICATIONS OF THE ACM, 1958, 1 (09) : 7 - 9
  • [22] Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes
    Calvo, M.
    Gonzalez-Pinto, S.
    Montijano, J. I.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 329 - 341
  • [23] Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes
    Dpto. de Análisis Matemático, Universidad de La Laguna, 38208 La Laguna-Tenerife, Spain
    不详
    J. Comput. Appl. Math., 1600, 2 (329-341):
  • [24] Cheap global error estimation in some Runge-Kutta pairs
    Kulikov, Gennady Yu.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 136 - 163
  • [25] Error propagation in Runge-Kutta methods
    Spijker, MN
    APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) : 309 - 325
  • [26] ON IMPLICIT RUNGE-KUTTA METHODS WITH A GLOBAL ERROR ESTIMATION FOR STIFF DIFFERENTIAL-EQUATIONS
    SCHOLZ, S
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (08): : 253 - 257
  • [27] Variational formulations for explicit Runge-Kutta Methods
    Munoz-Matute, Judit
    Pardo, David
    Calo, Victor M.
    Alberdi, Elisabete
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2019, 165 : 77 - 93
  • [28] Composite Group of Explicit Runge-Kutta Methods
    Abd Hamid, Fatin Nadiah
    Rabiei, Faranak
    Ismail, Fudziah
    INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS (ICMSS2016), 2016, 1739
  • [29] On the preservation of invariants by explicit Runge-Kutta methods
    Calvo, M.
    Hernandez-Abreu, D.
    Montijano, J. I.
    Randez, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 868 - 885
  • [30] Stiffness detection and estimation of dominant spectra with explicit Runge-Kutta methods
    Ekeland, K
    Owren, B
    Oines, E
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1998, 24 (04): : 368 - 382