Star-Based a Posteriori Error Estimates for Elliptic Problems

被引:1
|
作者
Achchab, B. [1 ,2 ]
Agouzal, A. [3 ]
Debit, N. [3 ]
Bouihat, K. [1 ,2 ]
机构
[1] Univ Hassan Ier, LM2CE, Ecole Super Technol Berrechid, Berrechid, Morocco
[2] Univ Hassan Ier, Fac Sci Econ Jurid & Sociales Settat, Berrechid, Morocco
[3] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
A posteriori error estimator; Nonconforming finite element method; Diffusion reaction equations; Stokes equations; FINITE-ELEMENT APPROXIMATIONS;
D O I
10.1007/s10915-013-9793-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an a posteriori error estimator for low order nonconforming finite element approximations of diffusion-reaction and Stokes problems, which relies on the solution of local problems on stars. It is proved to be equivalent to the energy error up to a data oscillation, without requiring Helmholtz decomposition of the error nor saturation assumption. Numerical experiments illustrate the good behavior and efficiency of this estimator for generic elliptic problems.
引用
收藏
页码:184 / 202
页数:19
相关论文
共 50 条
  • [21] A posteriori error estimates for elliptic variational inequalities
    Kornhuber, R
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (08) : 49 - 60
  • [22] Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems
    János Karátson
    Sergey Korotov
    Applications of Mathematics, 2009, 54 : 297 - 336
  • [23] Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems
    Lakkis, Omar
    Makridakis, Charalambos
    MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1627 - 1658
  • [24] A Posteriori Error Estimates for Elliptic Eigenvalue Problems Using Auxiliary Subspace Techniques
    Stefano Giani
    Luka Grubišić
    Harri Hakula
    Jeffrey S. Ovall
    Journal of Scientific Computing, 2021, 88
  • [25] Two-sided a posteriori error estimates for mixed formulations of elliptic problems
    Repin, Sergey
    Sauter, Stefan
    Smolianski, Anton
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 928 - 945
  • [26] REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATES FOR PARAMETRIZED ELLIPTIC EIGENVALUE PROBLEMS
    Fumagalli, Ivan
    Manzoni, Andrea
    Parolini, Nicola
    Verani, Marco
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1857 - 1885
  • [27] A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS WITH DIRAC MEASURE TERMS IN WEIGHTED SPACES
    Pablo Agnelli, Juan
    Garau, Eduardo M.
    Morin, Pedro
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (06): : 1557 - 1581
  • [28] Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems
    Karatson, Janos
    Korotov, Sergey
    APPLICATIONS OF MATHEMATICS, 2009, 54 (04) : 297 - 336
  • [29] A Posteriori Error Estimates for Elliptic Eigenvalue Problems Using Auxiliary Subspace Techniques
    Giani, Stefano
    Grubisic, Luka
    Hakula, Harri
    Ovall, Jeffrey S.
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
  • [30] A Posteriori Error Estimates for Nonstationary Problems
    Dolejsi, Vit
    Roskovec, Filip
    Vlasak, Miloslav
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 225 - 233